DOI QR코드

DOI QR Code

Effect of Silty Soil Content on Shear Behavior of Sandy Soil

사질토의 전단거동에 실트 함량이 미치는 영향

  • Yu, Jeongseok (School of Civil Engineering, Chungbuk National University) ;
  • Ahn, Kwangkuk (School of Civil Engineering, Chungbuk National University) ;
  • Kang, Hongsig (Byeokdong Construction Co. ltd.)
  • Received : 2020.10.03
  • Accepted : 2020.10.28
  • Published : 2020.11.01

Abstract

Natural soil is composed of particles of various sizes, and the shear behavior which is a kind of mechanical behavior of the soil is affected by the particle size distribution. In addition, since the natural soil contains a large mixture of coarse and fine grained soil, it is difficult to clearly understand the shear behavior of the soil. Therefore, a ring shear test was conducted on sandy soils that has various particle size distribution in order to identify the effect of the distribution on shear characteristics of soils. At this time, sand and silt were used for coarse and fine grained soils, respectively, to make sandy soils by changing the silt content. Also the water was supplied during the test to confirm shear characteristics of sandy soils with various particle size distributions. The result shows that the shear strength increases as the silt content increases, and the strength decreases as the silt content increases over the sand. Besides, residual shear strength gradually decreases because of the silt content when the water is supplied.

자연상태의 흙은 다양한 크기의 입자로 구성되어 있으며, 이 흙의 역학적 거동 중 전단거동은 입도 분포에 크게 영향을 받는다. 그리고 자연상태의 흙은 조립토와 세립토가 다양하게 혼합되어 존재하기 때문에 그 역학적 성질인 전단특성을 명확히 파악하기 어렵다. 이에 본 연구에서는 흙의 입도 분포가 흙의 전단특성에 미치는 영향을 확인하기 위한 목적으로 조립토는 모래를 세립토는 실트를 이용해 모래에 대한 실트의 함유량을 변화시켜 입도 분포가 다른 사질토를 조성한 후 링 전단시험을 수행하였다. 그리고 물 공급 시 입도 분포가 다른 사질토의 전단특성 변화를 확인하기 위해 링 전단시험 중 물을 공급하여 실험을 수행하였다. 그 결과 실트 함유량이 증가할수록 전단강도는 점차 증가하다 실트 함유량이 모래보다 많아지면 전단강도는 감소하는 것으로 나타났다. 그리고 수분 공급 시 실트 함유량에 따라 잔류전단강도는 완만한 경사를 나타내며 감소하는 것으로 나타났다.

Keywords

References

  1. Bishop, A. W., Green, G. E., Garga, V. K., Andersen, A. and Brown, J. D. (1971), A new ring-shear apparatus and its application to the measurement of residual strength, Geotechnique, Vol. 21, pp. 273-328. https://doi.org/10.1680/geot.1971.21.4.273
  2. Coussot, P., Nguyen, Q. D., Huynh, H. T. and Bonn, D. (2002), Viscosity bifurcation in thixotropic, yielding fluids, Journal of Rheology (1978-present), No. 46(3), pp. 573-589. https://doi.org/10.1122/1.1459447
  3. Jeong, S. W. and Song, Y. S. (2013), Ring-shear apparatus for estimating the mobility of debris flow and its application, Journal of the Korean society of civil engineers, Vol. 33, No. 1, pp. 181-194 (Korean). https://doi.org/10.12652/Ksce.2013.33.1.181
  4. Jeong, S. W., Ji, S. W. and Yim, G. J. (2014), Shear-rate dependent ring-shear characteristics of the waste materials of the Imgi mine in Busan, Journal of the Korean Geotechnical Society, No. 30(7), pp. 5-15 (Korean). https://doi.org/10.7843/kgs.2014.30.7.5
  5. Kang, H. S. and Kim, Y. T. (2013), Yield stress and viscosity characteristics of soils with liquidity index, Journal of Korean Society of Hazard Mitigation, No. 13(1), pp. 169-175 (Korean). https://doi.org/10.9798/KOSHAM.2013.13.1.169
  6. Lee, S. H. H. and Widjaja, B. (2013), Phase concept for mudflow based on the influence of viscosity, Soils and Foundations, No. 53(1), pp. 77-90 (Korean). https://doi.org/10.1016/j.sandf.2012.12.005
  7. Lee, G. C. (2007), Study on theological properties of suspension by shear box test, Journal of the Architectural Institute of Korea, No. 23(8), pp. 149-156 (Korean).
  8. Leroueil, S. (2001), Natural slopes and cuts: movement and failure mechanisms, Geotechnique, Vol. 51, No. 3, pp. 197-243. https://doi.org/10.1680/geot.2001.51.3.197
  9. Liu, S. H., Sun, D. A. and Matsuoka, H. (2005), On the interface friction in direct shear test, Computers and Geotechnics, No. 32(5), pp. 317-325. https://doi.org/10.1016/j.compgeo.2005.05.002
  10. Park, S. S., Jeong, S. W., Yoon, J. H. and Chae, B. G. (2013), Ring shear characteristics of two different soils, Journal of the Korean geotechnical society, Vol. 29, No. 5, pp. 39-52 (Korean). https://doi.org/10.7843/kgs.2013.29.5.39
  11. Park, G. W., Hong, W. T. and Lee, J. S. (2017), Estimation of shear strength and rheological parameters of fine-grained soil using direct shear test, journal of the korean geo-environmental society, Vol. 18, No. 2, pp. 29-37 (Korean).
  12. Sadrekarimi, A. and Olson, S. M. (2010), Particle damage observed in ring shear tests on sands, Canadian Geotechnical Journal, Vol. 47, pp. 497-515. https://doi.org/10.1139/T09-117
  13. Sassa, K., Fukuoka, H., Wang, G. and Ishikawa, N. (2004), Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics, Landslides, Vol. 1, pp. 7-19. https://doi.org/10.1007/s10346-003-0004-y
  14. Tika, T. E., Vaughan, P. R. and Lemos, L. J. (1996), Fast shearing of pre-existing shear zones in soil, Geotechnique, Vol. 46, No. 2, pp. 197-233. https://doi.org/10.1680/geot.1996.46.2.197
  15. Tika, T. E. and Hutchinson, J. N. (1999), Ring shear tests on soil from the Vaiont landslide slip surface, Geotechnique, Vol. 49, No. 1, pp. 59-74. https://doi.org/10.1680/geot.1999.49.1.59
  16. Tiwari, B. and Marui, H. (2004), Objective oriented multistage ring shear test for shear strength of landslide soil, Journal of Geotechnical and Geoenvironmental Engineering, No. 130(2), pp. 217-222. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(217)
  17. Van Asch, Th. W. J., Van Beek, L. P. H. and Boggard, T. A. (2007), Problems in predicting the mobility of slow-moving landslides, Engineering Geology, Vol. 91, pp. 46-55. https://doi.org/10.1016/j.enggeo.2006.12.012
  18. Vallejo, L. E. (2001), Interpretation of the limits in shear strength in vinary granular mixtures, Canadian Geotechnical Journal, Vol. 38, pp. 1097-1104. https://doi.org/10.1139/t01-029
  19. Vallejo, L. E. and Mawby, R. (2000), Porosity influence on the shear strength of granular meterial-clay mixtures, Engineering Geology, 58, pp. 15-136
  20. WP/WLI. (1995), A suggested method for describing the rate of movement of a landslide. International Union of Geological Sciences Working Group on Landslides: Bulletin of the International Association of Engineering Geology, Vol. 52, No. 1, pp. 75-78.