DOI QR코드

DOI QR Code

CO2/N2 분리를 위한 SBS/UiO-66 기반의 고투과성 혼합 매질 분리막

Highly-permeable SBS/UiO-66 Mixed Matrix Membranes for CO2/N2 Separation

  • 김영준 (연세대학교 화공생명공학과) ;
  • 문승재 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Kim, Young Jun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Moon, Seung Jae (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 투고 : 2020.09.29
  • 심사 : 2020.10.19
  • 발행 : 2020.10.31

초록

본 논문에서는 UiO-66 입자를 합성하고, 이를 열가소성 탄성중합체인 polystyrene-block-polybutadiene-block-polystyrene (SBS) 블록공중합체 매질에 삽입하는 방식으로 CO2/N2 기체를 분리하기 위한 혼합 매질 분리막을 제조하였다. UiO-66가 고분자 매질에서 미치는 영향을 확인하기 위해 SBS와 UiO-66의 질량 비율을 변화시켜가며 혼합 매질 분리막을 제조하였다. 또한 UiO-66 입자의 균일한 분산을 위해서 두 차례에 걸친 초음파 처리 및 자성 막대를 이용한 물리적 혼합을 활용하였다. 제조된 시료들은 푸리에 변환 적외분광법(FT-IR), 주사전자현미경(SEM)을 통해 확인하였다. 또한 기체 투과 성능은 time-lag method를 통해 확인하였다. 이때, UiO-66의 함유량이 증가함에 따라 혼합 매질 분리막의 투과도는 크게 증가하였지만, CO2/N2 선택도는 크게 감소하지 않았다. 가장 좋은 성능을 보인 20%의 UiO-66 입자를 함유한 분리막의 경우 663.8 barrer의 CO2 투과도와 13.3의 CO2/N2 선택도를 보여주었다. 이러한 결과는 Robeson plot에서 순수 고분자 막에 비해 upper bound에 더 가까운 성능을 나타냈는데, 첨가된 UiO-66가 선택도를 크게 희생시키지 않고 기체 투과도는 두 배 이상 향상시켰기 때문이다.

In this study, we developed mixed matrix membranes by blending thermoplastic elastomer, i.e. polystyreneblock-polybutadiene-block-polystyrene (SBS) block copolymer with the synthesized UiO-66 particles for CO2/N2 gas separation. To investigate the effect of UiO-66 particles in the SBS matrix, we prepared different mixed matrix membranes (MMMs) by varying the mass ratio of SBS and UiO-66 in the blend. To fabricate well-dispersed UiO-66, the SBS/UiO-66 mixture was sonicated and stirred thoroughly. The physico-chemical properties of prepared membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The gas separation performance was measured by time-lag method. The permeability of the MMMs increased significantly as the content of UiO-66 increased, but the CO2/N2 selectivity did not decrease significantly. The membranes containing 20% of UiO-66 particles showed the best performance with the CO2 permeability and CO2/N2 selectivity of 663.8 barrer and 13.3, respectively. This result showed performance closer to upper bound than pure SBS membrane in the Robeson plot, as the added UiO-66 particles did not significantly sacrifice selectivity and more than doubled gas permeability.

키워드

참고문헌

  1. K. Greer, D. Zeller, J. Woroniak, A. Coulter, M. Winchester, M. L. D. Palomares, and D. Pauly, "Global trends in carbon dioxide ($CO_2$) emissions from fuel combustion in marine fisheries from 1950 to 2016", Mar. Policy, 107, 103382 (2019). https://doi.org/10.1016/j.marpol.2018.12.001
  2. M. Kumar, S. Sundaram, E. Gnansounou, C. Larroche, and I. S. Thakur, "Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review", Bioresour. Technol., 247, 1059 (2018). https://doi.org/10.1016/j.biortech.2017.09.050
  3. D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed. Engl., 49, 6058 (2010). https://doi.org/10.1002/anie.201000431
  4. A. A. Olajire, "$CO_2$ capture and separation technologies for end-of-pipe applications - A review", Energy, 35, 2610 (2010). https://doi.org/10.1016/j.energy.2010.02.030
  5. C.-H. Yu, C.-H. Huang, and C.-S. Tan, "A review of $CO_2$ capture by absorption and adsorption", Aerosol Air Qual. Res., 12, 745 (2012). https://doi.org/10.4209/aaqr.2012.05.0132
  6. Z. Y. Yeo, T. L. Chew, P. W. Zhu, A. R. Mohamed, and S.-P. Chai, "Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review", J. Nat. Gas Chem., 21, 282 (2012). https://doi.org/10.1016/S1003-9953(11)60366-6
  7. N. Kosinov, J. Gascon, F. Kapteijn, and E. J. M. Hensen, "Recent developments in zeolite membranes for gas separation", J. Membr. Sci., 499, 65 (2016). https://doi.org/10.1016/j.memsci.2015.10.049
  8. M. Saeed, S. Rafiq, L. H. Bergersen, and L. Deng, "Tailoring of water swollen PVA membrane for hosting carriers in $CO_2$ facilitated transport membranes", Sep. Purif. Technol., 179, 550 (2017). https://doi.org/10.1016/j.seppur.2017.02.022
  9. R. Khalilpour, K. Mumford, H. Zhai, A. Abbas, G. Stevens, and E. S. Rubin, "Membrane-based carbon capture from flue gas: A review", J. Clean Prod., 103, 286 (2015). https://doi.org/10.1016/j.jclepro.2014.10.050
  10. O. d. Q. F. Araujo and J. L. de Medeiros, "Carbon capture and storage technologies: Present scenario and drivers of innovation", Curr. Opin. Chem. Eng., 17, 22 (2017). https://doi.org/10.1016/j.coche.2017.05.004
  11. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  12. M. Waqas Anjum, B. Bueken, D. De Vos, and I. F. J. Vankelecom, "MIL-125(Ti) based mixed matrix membranes for $CO_2$ separation from $CH_4$ and $N_2$", J. Membr. Sci., 502, 21 (2016). https://doi.org/10.1016/j.memsci.2015.12.022
  13. V. Nafisi and M.-B. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for $CO_2$ capture", J. Membr. Sci., 459, 244 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  14. M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, and T. Matsuura, "State-of-the-art membrane based $CO_2$ separation using mixed matrix membranes (MMMs): An overview on current status and future directions", Prog. Polym. Sci., 39, 817 (2014). https://doi.org/10.1016/j.progpolymsci.2014.01.003
  15. S. R. Venna and M. A. Carreon, "Metal organic framework membranes for carbon dioxide separation", Chem. Eng. Sci., 124, 3 (2015). https://doi.org/10.1016/j.ces.2014.10.007
  16. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, I. X. F. X. Llabres, and J. Gascon, "Metal-organic framework nanosheets in polymer composite materials for gas separation", Nat. Mater., 14, 48 (2015). https://doi.org/10.1038/nmat4113
  17. Z. Hu and D. Zhao, "De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal-organic frameworks and membrane materials", Dalton Trans., 44, 19018 (2015). https://doi.org/10.1039/C5DT03359D
  18. S. Edubilli and S. Gumma, "A systematic evaluation of UiO-66 metal organic framework for $CO_2/N_2$ separation", Sep. Purif. Technol., 224, 85 (2019). https://doi.org/10.1016/j.seppur.2019.04.081
  19. C. Y. Chuah, J. Lee, J. Song, and T. H. Bae, "$CO_2/N_2$ separation properties of polyimide-based mixed-matrix membranes comprising UiO-66 with various functionalities", Membranes, 10, 154 (2020). https://doi.org/10.3390/membranes10070154
  20. M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, "A facile synthesis of UiO-66, UiO-67 and their derivatives", Chem. Commun., 49, 9449 (2013). https://doi.org/10.1039/c3cc46105j
  21. S. J. Kim, H. Jeon, D. J. Kim, and J. H. Kim, "High-performance polymer membranes with multi- functional amphiphilic micelles for $CO_2$ capture", ChemSusChem, 8, 3783 (2015). https://doi.org/10.1002/cssc.201501063
  22. P. Yang, Q. Liu, J. Liu, H. Zhang, Z. Li, R. Li, L. Liu, and J. Wang, "Interfacial growth of a metalorganic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(vi)", J. Mater. Chem. A, 5, 17933 (2017). https://doi.org/10.1039/C6TA10022H
  23. N. U. Kim, B. J. Park, J. H. Lee, and J. H. Kim, "High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA-co-POEM comb-like copolymer for $CO_2$ capture", J. Mater. Chem. A, 7, 14723 (2019). https://doi.org/10.1039/C9TA02962A
  24. Y. Cao, H. Zhang, F. Song, T. Huang, J. Ji, Q. Zhong, W. Chu, and Q. Xu, "$UiO-66-NH_2/GO$ composite: Synthesis, characterization and $CO_2$ adsorption performance", Materials, 11, 589 (2018). https://doi.org/10.3390/ma11040589
  25. M. W. Anjum, F. Vermoortele, A. L. Khan, B. Bueken, D. E. De Vos, and I. F. Vankelecom, "Modulated UiO-66-based mixed-matrix membranes for $CO_2$ separation", ACS Appl. Mater. Interfaces, 7, 25193 (2015). https://doi.org/10.1021/acsami.5b08964