References
- J. H. Yoon, S. B. Hong, S. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017). https://doi.org/10.1016/j.jcis.2016.11.033
- J. H. Yoon, K. H. Kim, N. H. Bae, G. S. Sim, Y. Oh, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, Fabrication of newspaper-based potentiometric platform for flexible and disposable ion sensors, J. Colloid Interface Sci., 508, 167-173 (2017). https://doi.org/10.1016/j.jcis.2017.08.036
- S. Islam, H. Bakhtiar, S. Naseem, M. S. B. A. Aziz, N. Bidin, S. Riaz, and J. Ali, Surface functionality and optical properties impact of phenol red dye on mesoporous silica matrix for fiber optic pH sensing, Sens. Actuators A, Phys., 276, 267-277 (2018). https://doi.org/10.1016/j.sna.2018.04.027
- K. Hammarling, M. Engholm, H. Andersson, M. Sandberg, and H. Nilsson, Broad-range hydrogel-based pH sensor with capacitive readout manufactured on a flexible substrate, Chemosensors, 6, 30 (2018). https://doi.org/10.3390/chemosensors6030030
- S. Chinnathambi and G. J. W. Euverink, Polyaniline functionalized electrochemically reduced graphene oxide chemiresistive sensor to monitor the pH in real time during microbial fermentations, Sens. Actuators B, Chem., 264, 38-44 (2018). https://doi.org/10.1016/j.snb.2018.02.087
- S. Hou, J. Dong, M. Tang, X. Jiang, Z. Jiao, and B. Zhao, Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated pH luminescent probe, Anal. Chem., 91, 5455-5460 (2019). https://doi.org/10.1021/acs.analchem.9b00848
- Y. Zhao, M. Lei, S. Liu, and Q. Zhao, Smart hydrogel-based optical fiber SPR sensor for pH measurements, Sens. Actuators B, Chem., 261, 226-232 (2018). https://doi.org/10.1016/j.snb.2018.01.120
- M. Pospisilova, G. Kuncova, and J. Trogl, Fiber-optic chemical sensors and fiber-optic bio-sensors, Sensors, 15, 25208-25259 (2015). https://doi.org/10.3390/s151025208
- H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9 (2019). https://doi.org/10.1186/s40580-019-0179-0
- H. J. Park, J. Jeong, J. H. Yoon, S. G. Son, Y. K. Kim, D. H. Kim, K. G. Lee, and B. G. Choi, Preparation of ultrathin defect-free graphene sheets from graphite via fluidic delamination for solid-contact ion-to-electron transducers in potentiometric sensors, J. Colloid Interface Sci., 560, 817-824 (2020). https://doi.org/10.1016/j.jcis.2019.11.001
- S. G. Son, H. J. Park, Y. K. Kim, H. Cho, and B. G. Choi, Fabrication of low-cost and flexible potassium ion sensors based on screen printing and their electrochemical characteristics, ACS Appl. Chem. Eng., 30, 737-741 (2019).
- J. H. Yoon, S. Kim, Y. Eom, J. M. Koo, H. Cho, T. J. Lee, K. G. Lee, H. J. Park, Y. K. Kim, H. Yoo, S. Y. Hwang, J. Park, and B. G. Choi, Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor, ACS Appl. Mater. Interfaces, 11, 46165-46175 (2019). https://doi.org/10.1021/acsami.9b16829
- J. H. Yoon, H. J. Park, S. H. Park, K. G. Lee, and B. G. Choi, Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors, Carbon Lett., 30, 73-80 (2020). https://doi.org/10.1007/s42823-019-00072-6
- A. U. Alam, Y. Qin, S. Nambiar, J. T. W. Yeow, M. M. R. Howlader, N. Hu, and M. J. Deen, Polymers and organic materials-based pH sensors for healthcare applications, Prog. Mater. Sci., 96, 174-216 (2018). https://doi.org/10.1016/j.pmatsci.2018.03.008
- W. P. Nikolajek, and H. M. Emrich, pH of sweat of patients with cystic fibrosis, Klin. Wschr., 54, 287-288 (1976). https://doi.org/10.1007/BF01468925
- M. B. Abelson, A. A. Sadun, I. J. Udell, and J. H. Weston, Alkaline tear pH in ocular rosacea, Am. J. Ophthalmol., 90, 866-869 (1980). https://doi.org/10.1016/S0002-9394(14)75203-1
- K. Chaisiwamongkhol, C. Batchelor-Mcauley, and R. G. Compton, Amperometric micro pH measurements in oxygenated saliva, Analyst, 142, 2828-2835 (2017). https://doi.org/10.1039/C7AN00809K
- S. Baliga, S. Muglikar, and R. Kale, Salivary pH: A diagnostic biomarker, J. Indian Soc. Periodonto., 17, 461-465 (2013). https://doi.org/10.4103/0972-124X.118317
- T. Kwong, C. Robinson, D. Spencer, O. J. Wiseman, and F. E. K. Frankl, Accuracy of urine pH testing in a regional metabolic renal clinic: Is the dipstick accurate enough? Urolithiasis, 41, 129-132 (2013). https://doi.org/10.1007/s00240-013-0546-y
- J. H. Yoon, S. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensor for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946 (2020). https://doi.org/10.1016/j.bios.2019.111946
- J. Ding and W. Qin, Recent advances in potentiometric biosensors, Trends Anlyt. Chem., 124, 115803 (2020). https://doi.org/10.1016/j.trac.2019.115803
- A. J. Bandodkar and J. Wang, Non-invasive wearable electrochemical sensors: A review, Trends Biotechnol., 32, 363-371 (2014). https://doi.org/10.1016/j.tibtech.2014.04.005
- L. Manjakkal, S. Dervin, and R. Dahiya, Flexible potentiometric pH sensors for wearable systems, RSC Adv., 10, 8594-8617 (2020). https://doi.org/10.1039/D0RA00016G
- M. Parrilla, I. Ortiz-Gomez, R. Canovas, A. Salinas-Castillo, M. Cuartero, and G. A. Crespo, Wearable potentiometric ion patch for on-body electrolyte monitoring in sweat: Toward a validation strategy to ensure physiological relevance, Anal. Chem., 91, 8644-8651 (2019). https://doi.org/10.1021/acs.analchem.9b02126
- Y. Qin, H. Kwon, M. M. R. Howlader, and M. J. Deen, Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: Recent advances and research challenges, RSC Adv., 5, 69086-69109 (2015). https://doi.org/10.1039/C5RA11291E
- W. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, A flexible pH sensor based on the iridium oxide sensing film, Sens. Actuators A, Phys., 169, 1-11 (2011). https://doi.org/10.1016/j.sna.2011.05.016
- Y. Liao and J. Chou, Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system, Sens. Actuators B, Chem., 128, 603-612 (2008). https://doi.org/10.1016/j.snb.2007.07.023
- L. Telli, B. Brahimi, and A. Hammouche, Study of a pH sensor with MnO2 and montmorillonite-based solid-state internal reference, Solid State Ion., 128, 225-259 (2000).
- Y. Liao and J. Chou, Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method, Mater. Chem. Phys., 114, 542-548 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.014
- C. Tsai, J. Chou, T. Sun, and S. Hsiung, Study on the time-dependent slow response of the tin oxide pH electrode, IEEE Sens. J., 6, 1243-1249 (2006). https://doi.org/10.1109/JSEN.2006.881364
- B. Lakard, G. Herlem, S. Lakard, R. Guyetant, and B. Fahys, Potentiometric pH sensors based on electrodeposited polymers, Polymer, 46, 12233-12239 (2005). https://doi.org/10.1016/j.polymer.2005.10.095
- K. Shiu, F. Song, and K. Lau, Effects of polymer thickness on the potentiometric pH responses of polypyrrole modified glassy carbon electrode, J. Electroanal. Chem., 476, 109-117 (1999). https://doi.org/10.1016/S0022-0728(99)00372-1
- P. Marsh, L. Manjakkal, X. Yang, M. Huerta, T. Le, L. Thiel, J. C. Chiao, H. Cao, and R. Dahiya, Flexible iridium oxide based pH sensor integrated with inductively coupled wireless transmission system for wearable applications, IEEE Sens. J., 20, 5130-5138 (2020). https://doi.org/10.1109/JSEN.2020.2970926
- S. Shahrestani, M. C. Ismail, S. Kakooei, M. Beheshti, M. Zabihiazadboni, and M. A. Zavareh, Iridium oxide pH sensor based on stainless steel wire for pH mapping on metal surface, IOP Conf. Ser. Mater. Sci. Eng., 328, 012014 (2018). https://doi.org/10.1088/1757-899X/328/1/012014
- M. Tabata, C. Ratanaporncharoen, A. Asano, Y. Kitasako, M. Ikeda, T. Goda, A. Matsumoto, J. Tagami, and Y. Miyahara, Miniaturized Ir/IrOx pH sensor for quantitative diagnosis of dental caries, Procedia Eng., 168, 598-601 (2016). https://doi.org/10.1016/j.proeng.2016.11.223
- M. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P. J. Murzynowski, and C. Dagdeviren, Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications, Chem. Rev., 119, 5248-5297 (2019). https://doi.org/10.1021/acs.chemrev.8b00655
- T. Lindfors, and A. Ivaska, pH sensitivity of polyaniline and its substituted derivatives, J. Electroanal. Chem., 531, 43-52 (2002). https://doi.org/10.1016/S0022-0728(02)01005-7
- S. H. Park, J. Jeong, S. J. Kim, K. H. Kim, S. H. Lee, N. H. Bae, K. G. Lee, and B. G. Choi, Large-area and 3D polyaniline nanoweb film for flexible supercapacitors with high rate capability and long cycle life, ACS Appl. Energy Mater., DOI: 10.1021/acsaem.0c01140 (2020).
- R. P. Buck and E. Lindner, Recommendations for nomenclature of ion-selective electrodes (IUPAC recommendations 1994), Pure Appl. Chem., 66, 2527-2536 (1994). https://doi.org/10.1351/pac199466122527
- J. M. Pingarron, J. Labuda, J. Barek, C. M. A. Brett, M. F. Camoes, M. Fojta, and D. B. Hibbert, Terminology of electrochemical methods of analysis (IUPAC recommendations 2019), Pure Appl. Chem., 92, 641-694 (2020). https://doi.org/10.1515/pac-2018-0109
-
H. Noby, A. H. El-Shazly, M. F. Elkady, and M. Ohshima, Novel preparation of self-assembled HCl-doped polyaniline nanotubes using compressed
$CO_2$ -assisted polymerization, Polymer, 156, 71-75 (2018). https://doi.org/10.1016/j.polymer.2018.09.060