DOI QR코드

DOI QR Code

Preparation of Flexible 3D Porous Polyaniline Film for High-Performance Electrochemical pH Sensor

고성능 전기 화학 pH 센서를 위한 유연한 3차원 다공성 폴리아닐린 필름 제조

  • Park, Hong Jun (Department of Chemical Engineering, Kangwon National University) ;
  • Park, Seung Hwa (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Ho Jun (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Kyoung G. (Nano-Bio Application Team, National Nanofab Center (NNFC)) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • Received : 2020.08.18
  • Accepted : 2020.09.04
  • Published : 2020.10.12

Abstract

A three-dimensional (3D) porous polyaniline (PANI) film was fabricated by a combined photo-and soft-lithography technique based on a large-area nanopillar array, followed by a controlled chemical dilute polymerization. The as-obtained 3D PANI film consisted of hierarchically interconnected PANI nanofibers, resulting in a 3D hierarchical nanoweb film with a large surface and open porous structure. Using electrochemical measurements, the resulting 3D PANI film was demonstrated as a flexible pH sensor electrode, exhibiting a high sensitivity of 60.3 mV/pH, which is close to the ideal Nernstian behavior. In addition, the 3D PANI electrode showed a fast response time of 10 s, good repeatability, and good selectivity. When the 3D PANI electrode was measured under a mechanically bent state, the electrode exhibited a high sensitivity of 60.4 mV/pH, demonstrating flexible pH sensor performance.

본 연구에서는 넓은 면적의 나노필라 배열 필름을 기반으로 포토 및 소프트 리소그래피 기술과 화학적 희석 고분자 중합을 조절하여 3차원 다공성의 폴리아닐린 필름을 제조하였다. 3차원 폴리아닐린 필름은 계층 간 연결된 폴리아닐린 나노파이버들로 구성되어 있어, 넓은 표면적과 개방형의 다공성 구조를 가지는 3차원 계층형 나노웹 필름을 형성한다. 전기화학분석법을 기반으로 3차원 폴리아닐린 필름이 유연한 pH 센서 전극이 되는 것을 증명하였다. 3차원 폴리아닐린 필름은 이상적인 네른스트 거동과 근접한 60.3 mV/pH의 높은 민감도를 보였다. 또한, 3차원 폴리아닐린 전극은 10 min의 빠른 반응 속도, 우수한 반복성 그리고 높은 선택성을 나타내었다. 3차원 폴리아닐린 전극을 기계적으로 굽힌 상태에서 센서 특성을 측정하였을 때, 전극이 60.4 mV/pH의 높은 민감도를 보여줌으로써, 유연한 pH 센서 성능을 증명하였다.

Keywords

References

  1. J. H. Yoon, S. B. Hong, S. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017). https://doi.org/10.1016/j.jcis.2016.11.033
  2. J. H. Yoon, K. H. Kim, N. H. Bae, G. S. Sim, Y. Oh, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, Fabrication of newspaper-based potentiometric platform for flexible and disposable ion sensors, J. Colloid Interface Sci., 508, 167-173 (2017). https://doi.org/10.1016/j.jcis.2017.08.036
  3. S. Islam, H. Bakhtiar, S. Naseem, M. S. B. A. Aziz, N. Bidin, S. Riaz, and J. Ali, Surface functionality and optical properties impact of phenol red dye on mesoporous silica matrix for fiber optic pH sensing, Sens. Actuators A, Phys., 276, 267-277 (2018). https://doi.org/10.1016/j.sna.2018.04.027
  4. K. Hammarling, M. Engholm, H. Andersson, M. Sandberg, and H. Nilsson, Broad-range hydrogel-based pH sensor with capacitive readout manufactured on a flexible substrate, Chemosensors, 6, 30 (2018). https://doi.org/10.3390/chemosensors6030030
  5. S. Chinnathambi and G. J. W. Euverink, Polyaniline functionalized electrochemically reduced graphene oxide chemiresistive sensor to monitor the pH in real time during microbial fermentations, Sens. Actuators B, Chem., 264, 38-44 (2018). https://doi.org/10.1016/j.snb.2018.02.087
  6. S. Hou, J. Dong, M. Tang, X. Jiang, Z. Jiao, and B. Zhao, Triple-interpenetrated lanthanide-organic framework as dual wave bands self-calibrated pH luminescent probe, Anal. Chem., 91, 5455-5460 (2019). https://doi.org/10.1021/acs.analchem.9b00848
  7. Y. Zhao, M. Lei, S. Liu, and Q. Zhao, Smart hydrogel-based optical fiber SPR sensor for pH measurements, Sens. Actuators B, Chem., 261, 226-232 (2018). https://doi.org/10.1016/j.snb.2018.01.120
  8. M. Pospisilova, G. Kuncova, and J. Trogl, Fiber-optic chemical sensors and fiber-optic bio-sensors, Sensors, 15, 25208-25259 (2015). https://doi.org/10.3390/s151025208
  9. H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9 (2019). https://doi.org/10.1186/s40580-019-0179-0
  10. H. J. Park, J. Jeong, J. H. Yoon, S. G. Son, Y. K. Kim, D. H. Kim, K. G. Lee, and B. G. Choi, Preparation of ultrathin defect-free graphene sheets from graphite via fluidic delamination for solid-contact ion-to-electron transducers in potentiometric sensors, J. Colloid Interface Sci., 560, 817-824 (2020). https://doi.org/10.1016/j.jcis.2019.11.001
  11. S. G. Son, H. J. Park, Y. K. Kim, H. Cho, and B. G. Choi, Fabrication of low-cost and flexible potassium ion sensors based on screen printing and their electrochemical characteristics, ACS Appl. Chem. Eng., 30, 737-741 (2019).
  12. J. H. Yoon, S. Kim, Y. Eom, J. M. Koo, H. Cho, T. J. Lee, K. G. Lee, H. J. Park, Y. K. Kim, H. Yoo, S. Y. Hwang, J. Park, and B. G. Choi, Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor, ACS Appl. Mater. Interfaces, 11, 46165-46175 (2019). https://doi.org/10.1021/acsami.9b16829
  13. J. H. Yoon, H. J. Park, S. H. Park, K. G. Lee, and B. G. Choi, Electrochemical characterization of reduced graphene oxide as an ion-to-electron transducer and application of screen-printed all-solid-state potassium ion sensors, Carbon Lett., 30, 73-80 (2020). https://doi.org/10.1007/s42823-019-00072-6
  14. A. U. Alam, Y. Qin, S. Nambiar, J. T. W. Yeow, M. M. R. Howlader, N. Hu, and M. J. Deen, Polymers and organic materials-based pH sensors for healthcare applications, Prog. Mater. Sci., 96, 174-216 (2018). https://doi.org/10.1016/j.pmatsci.2018.03.008
  15. W. P. Nikolajek, and H. M. Emrich, pH of sweat of patients with cystic fibrosis, Klin. Wschr., 54, 287-288 (1976). https://doi.org/10.1007/BF01468925
  16. M. B. Abelson, A. A. Sadun, I. J. Udell, and J. H. Weston, Alkaline tear pH in ocular rosacea, Am. J. Ophthalmol., 90, 866-869 (1980). https://doi.org/10.1016/S0002-9394(14)75203-1
  17. K. Chaisiwamongkhol, C. Batchelor-Mcauley, and R. G. Compton, Amperometric micro pH measurements in oxygenated saliva, Analyst, 142, 2828-2835 (2017). https://doi.org/10.1039/C7AN00809K
  18. S. Baliga, S. Muglikar, and R. Kale, Salivary pH: A diagnostic biomarker, J. Indian Soc. Periodonto., 17, 461-465 (2013). https://doi.org/10.4103/0972-124X.118317
  19. T. Kwong, C. Robinson, D. Spencer, O. J. Wiseman, and F. E. K. Frankl, Accuracy of urine pH testing in a regional metabolic renal clinic: Is the dipstick accurate enough? Urolithiasis, 41, 129-132 (2013). https://doi.org/10.1007/s00240-013-0546-y
  20. J. H. Yoon, S. Kim, H. J. Park, Y. K. Kim, D. X. Oh, H. Cho, K. G. Lee, S. Y. Hwang, J. Park, and B. G. Choi, Highly self-healable and flexible cable-type pH sensor for real-time monitoring of human fluids, Biosens. Bioelectron., 150, 111946 (2020). https://doi.org/10.1016/j.bios.2019.111946
  21. J. Ding and W. Qin, Recent advances in potentiometric biosensors, Trends Anlyt. Chem., 124, 115803 (2020). https://doi.org/10.1016/j.trac.2019.115803
  22. A. J. Bandodkar and J. Wang, Non-invasive wearable electrochemical sensors: A review, Trends Biotechnol., 32, 363-371 (2014). https://doi.org/10.1016/j.tibtech.2014.04.005
  23. L. Manjakkal, S. Dervin, and R. Dahiya, Flexible potentiometric pH sensors for wearable systems, RSC Adv., 10, 8594-8617 (2020). https://doi.org/10.1039/D0RA00016G
  24. M. Parrilla, I. Ortiz-Gomez, R. Canovas, A. Salinas-Castillo, M. Cuartero, and G. A. Crespo, Wearable potentiometric ion patch for on-body electrolyte monitoring in sweat: Toward a validation strategy to ensure physiological relevance, Anal. Chem., 91, 8644-8651 (2019). https://doi.org/10.1021/acs.analchem.9b02126
  25. Y. Qin, H. Kwon, M. M. R. Howlader, and M. J. Deen, Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: Recent advances and research challenges, RSC Adv., 5, 69086-69109 (2015). https://doi.org/10.1039/C5RA11291E
  26. W. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, A flexible pH sensor based on the iridium oxide sensing film, Sens. Actuators A, Phys., 169, 1-11 (2011). https://doi.org/10.1016/j.sna.2011.05.016
  27. Y. Liao and J. Chou, Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system, Sens. Actuators B, Chem., 128, 603-612 (2008). https://doi.org/10.1016/j.snb.2007.07.023
  28. L. Telli, B. Brahimi, and A. Hammouche, Study of a pH sensor with MnO2 and montmorillonite-based solid-state internal reference, Solid State Ion., 128, 225-259 (2000).
  29. Y. Liao and J. Chou, Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method, Mater. Chem. Phys., 114, 542-548 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.014
  30. C. Tsai, J. Chou, T. Sun, and S. Hsiung, Study on the time-dependent slow response of the tin oxide pH electrode, IEEE Sens. J., 6, 1243-1249 (2006). https://doi.org/10.1109/JSEN.2006.881364
  31. B. Lakard, G. Herlem, S. Lakard, R. Guyetant, and B. Fahys, Potentiometric pH sensors based on electrodeposited polymers, Polymer, 46, 12233-12239 (2005). https://doi.org/10.1016/j.polymer.2005.10.095
  32. K. Shiu, F. Song, and K. Lau, Effects of polymer thickness on the potentiometric pH responses of polypyrrole modified glassy carbon electrode, J. Electroanal. Chem., 476, 109-117 (1999). https://doi.org/10.1016/S0022-0728(99)00372-1
  33. P. Marsh, L. Manjakkal, X. Yang, M. Huerta, T. Le, L. Thiel, J. C. Chiao, H. Cao, and R. Dahiya, Flexible iridium oxide based pH sensor integrated with inductively coupled wireless transmission system for wearable applications, IEEE Sens. J., 20, 5130-5138 (2020). https://doi.org/10.1109/JSEN.2020.2970926
  34. S. Shahrestani, M. C. Ismail, S. Kakooei, M. Beheshti, M. Zabihiazadboni, and M. A. Zavareh, Iridium oxide pH sensor based on stainless steel wire for pH mapping on metal surface, IOP Conf. Ser. Mater. Sci. Eng., 328, 012014 (2018). https://doi.org/10.1088/1757-899X/328/1/012014
  35. M. Tabata, C. Ratanaporncharoen, A. Asano, Y. Kitasako, M. Ikeda, T. Goda, A. Matsumoto, J. Tagami, and Y. Miyahara, Miniaturized Ir/IrOx pH sensor for quantitative diagnosis of dental caries, Procedia Eng., 168, 598-601 (2016). https://doi.org/10.1016/j.proeng.2016.11.223
  36. M. T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G. C. Moore, P. J. Murzynowski, and C. Dagdeviren, Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications, Chem. Rev., 119, 5248-5297 (2019). https://doi.org/10.1021/acs.chemrev.8b00655
  37. T. Lindfors, and A. Ivaska, pH sensitivity of polyaniline and its substituted derivatives, J. Electroanal. Chem., 531, 43-52 (2002). https://doi.org/10.1016/S0022-0728(02)01005-7
  38. S. H. Park, J. Jeong, S. J. Kim, K. H. Kim, S. H. Lee, N. H. Bae, K. G. Lee, and B. G. Choi, Large-area and 3D polyaniline nanoweb film for flexible supercapacitors with high rate capability and long cycle life, ACS Appl. Energy Mater., DOI: 10.1021/acsaem.0c01140 (2020).
  39. R. P. Buck and E. Lindner, Recommendations for nomenclature of ion-selective electrodes (IUPAC recommendations 1994), Pure Appl. Chem., 66, 2527-2536 (1994). https://doi.org/10.1351/pac199466122527
  40. J. M. Pingarron, J. Labuda, J. Barek, C. M. A. Brett, M. F. Camoes, M. Fojta, and D. B. Hibbert, Terminology of electrochemical methods of analysis (IUPAC recommendations 2019), Pure Appl. Chem., 92, 641-694 (2020). https://doi.org/10.1515/pac-2018-0109
  41. H. Noby, A. H. El-Shazly, M. F. Elkady, and M. Ohshima, Novel preparation of self-assembled HCl-doped polyaniline nanotubes using compressed $CO_2$-assisted polymerization, Polymer, 156, 71-75 (2018). https://doi.org/10.1016/j.polymer.2018.09.060