참고문헌
- Y. C. Yang, J. A. Baker, and J. R. Ward, Decontamination of chemical warfare agents, Chem. Rev., 92, 1729-1743 (1992). https://doi.org/10.1021/cr00016a003
- K. B. Kim, O. G. Tsay, D. A. Atwood, and D. G. Churchill, Destruction and detection of chemical warfare agents, Chem. Rev., 111, 5345-5403 (2011). https://doi.org/10.1021/cr100193y
- R. A. Moss, K. W. Alwis, and G. O. Bizzigotti, O-iodosobenzoate: catalyst for the micellar cleavage of activated esters and phosphates, J. Am. Chem. Soc., 105, 681-682 (1983). https://doi.org/10.1021/ja00341a092
- H. Morales-Rojas and R. A. Moss, Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles, Chem. Rev., 102, 2497-2521 (2002). https://doi.org/10.1021/cr9405462
- R. L. Gustafson, S. Chaberek Jr., and A. E. Martell, A kinetic study of the copper(II) chelate catalyzed hydrolysis of diisopropyl phosphorofluoridate, J. Am. Chem. Soc., 85, 598-601 (1963). https://doi.org/10.1021/ja00888a027
- Y. S. Kye, K. H. Jeong, and W. Y. Chung, Decomposition studies of DFP using transition metal catalysts, Appl. Chem. Eng., 21, 1-5 (2010).
- N. Sharma and R. Kakkar, Recent advancements on warfare agents/metal oxides surface chemistry and their simulation study, Adv. Mater Lett., 4, 508-521 (2013). https://doi.org/10.5185/amlett.2012.12493
-
S. Y. Moon, E. Proussaloglou, G. W. Peterson, J. B. DeCoste, M. G. Hall, A. J. Howarth, J. T. Hupp, and O. K. Farha, Detoxification of chemical warfare agents using a
$Zr_6$ -based metal-organic framework/polymer mixture, Chem. Eur. J., 22, 14864-14868 (2016). https://doi.org/10.1002/chem.201603976 - Y. Liu, A. J. Howarth, N. A. Vermeulen, S. Y. Moon, J. T. Hupp, and O. K. Farha, Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks, Coord. Chem. Rev., 346, 101-111 (2017). https://doi.org/10.1016/j.ccr.2016.11.008
-
M. C. de Koning, M. van Grol, and T. Breijaert, Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks
$UiO-66-NH_2$ , MOF-808, NU-1000, and PCN-777, Inorg. Chem., 56, 11804-11809 (2017). https://doi.org/10.1021/acs.inorgchem.7b01809 - T. Islamoglu, A. Atilgan, S. Y. Moon, G. W. Peterson, J. B. DeCoste, M. Hall, J. T. Hupp, and O. K. Farha, Cerium(IV) vs zirconium(IV) based metal-organic frameworks for detoxification of a nerve agent, Chem. Mater., 29, 2672-2675 (2017). https://doi.org/10.1021/acs.chemmater.6b04835
- M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev., 104, 6017-6084 (2004). https://doi.org/10.1021/cr030441b
- R Schmuhl, H. M. Krieg and K Keizer, Adsorption of Cu(II) and Cr(VI) ions by chitosan: Kinetics and equilibrium studies, Water SA, 27, 1-7 (2001).
- R. Sulakova, R. Hrdina, and G. M. B. Soares, Oxidation of azo textile soluble dyes with hydrogen peroxide in the presence of Cu(II)-chitosan heterogeneous catalysts, Dyes Pigm., 73, 19-24 (2007). https://doi.org/10.1016/j.dyepig.2005.10.004
- P. McGowan, C. Rayner and R. Blackburn, The combined synthesis and coloration of poly(lactic acid), Angew. Chem. Int. Ed., 50, 291-294 (2011). https://doi.org/10.1002/anie.201004920
- S. L. Bartelt-Hunt, D. R. U. Knappe and M. A. Barlaz, A review of chemical warfare agent simulants for the study of environmental behavior, Crit. Rev. Environ. Sci. Technol., 38, 112-136 (2008). https://doi.org/10.1080/10643380701643650
- K. H. Jeong, J. M. Shim, W. Y. Chung, Y. S. Kye, and D. W. Kim, Diisopropyl fluorophosphate (DFP) degradation activity using transition metal-dipicolylamine complexes, Appl. Organomet. Chem., 32, e4383-4387 (2018). https://doi.org/10.1002/aoc.4383
- Y. S. Kye, W. Y. Chung, D. W. Kim, Y. K. Park, S. U. Song, and K. H. Jeong, A study on the decomposition of DFP using Cu(II)-chitosan complex, J. KIMST, 15, 699-704 (2012).
-
R. W. Hay and N. Govan, The
$[Cu(tmen)(OH)(OH_2)]^+$ promoted hydrolysis of 2,4-dinitrophenyl diethyl phosphate and O-isopropyl methylphosphonofluoridate (Sarin) (tmen = N,N,N',N'-tetramethyl- 1,2-diaminoethane), Polyhedron, 17, 2079-2085 (1998). https://doi.org/10.1016/S0277-5387(97)00433-6 - J. W. Nah and M. K. Jang, Spectroscopic characterization and preparation of low molecular, water-soluble chitosan with free-amine group by novel method, J. Polym. Sci. A: Polym. Chem., 40, 3796-3803 (2002). https://doi.org/10.1002/pola.10463
- O. A. C. Monteiro Jr. and C. Airoldi, Some thermodynamic data on copper-chitin and copper-chitosan biopolymer interactions, J. Colloid Interface Sci., 212, 212-219 (1999). https://doi.org/10.1006/jcis.1998.6063
- K. Yu, J. Ho, E. McCandlish, B. Buckley, R. Patel, Z. Li, and N. C. Shapley, Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications, Colloid Surf. A: Physicochem. Eng. Asp., 425, 31-41 (2013). https://doi.org/10.1016/j.colsurfa.2012.12.043
-
S. Z. Bajwa and P. A. Lieberzeit, Recognition principle of
$Cu^{2+}$ - imprinted polymers - Assessing interactions by combined spectroscopic and mass-sensitive measurements, Sens. Actuators, B, 207, 976-980 (2015). https://doi.org/10.1016/j.snb.2014.07.066 - Y. Cai, L. Zheng, and Z. Fang, Selective adsorption of Cu(II) from an aqueous solution by ion imprinted magnetic chitosan microspheres prepared from steel pickling waste liquor, RSC Adv., 5, 97435-97445 (2015). https://doi.org/10.1039/C5RA16547D