DOI QR코드

DOI QR Code

Cu(II)-Lactic Acid와 Cu(II)-LMWS-Chitosan 착물의 DFP 가수분해반응 연구

Hydrolysis of DFP Using Cu(II)-Lactic Acid and Cu(II)-LMWS-Chitosan Chelates

  • 계영식 (육군사관학교 물리화학과) ;
  • 정근홍 (육군사관학교 물리화학과) ;
  • 김동욱 (육군사관학교 물리화학과)
  • Kye, Young-Sik (Department of Physics and Chemistry, Korea Military Academy) ;
  • Jeong, Keunhong (Department of Physics and Chemistry, Korea Military Academy) ;
  • Kim, Dongwook (Department of Physics and Chemistry, Korea Military Academy)
  • 투고 : 2020.07.20
  • 심사 : 2020.07.29
  • 발행 : 2020.10.12

초록

Lactic acid와 키토산을 Cu(II) 이온과 반응시켜 합성한 착물을 사용하여 유기인 유사 독성물질인 DFP (Diisopropyl fluorophosphate) 분해반응에 적용하였다. Cu(II)-lactic acid 착물의 경우 homogeneous 상태에서 분해반응 반감기가 37. 1 min으로 분해성능이 우수하였다. 1 kDa 저분자량 수용성 키토산으로 합성한 Cu(II)-LMWS chitosan 착물은 결정화 후에는 용해도가 낮아 heterogeneous 한 상태에서 분해반응이 진행되었으며 그 반감기는 32.9 h이었다. 이 결과는 기존에 연구된 18 kDa 키토산 Cu(II)착물의 분해반응속도보다 약 16배 정도 증가된 것이다. Cu(II)-LMWS chitosan 착물을 결정화하지 않고 homogeneous한 상태로 진행한 분해반응에서는 반감기가 8.75 h로 용해도에 따라 약 4배의 차이를 확인할 수 있었다.

Chelates synthesized with Cu(II) ion and lactic acid or chitosan were applied to the hydrolysis of organophosphate simulant, DFP (diisopropyl fluorophosphate). Under the homogeneous reaction condition, Cu(II)-lactic acid chelate hydrolyzed DFP with the half life time of 37.1 min. Cu(II)-LMWS chitosan chelate was synthesized with 1 kDa molecular weight of chitosan, which showed low solubility, and then crystallized. The half life time for hydrolyzing DFP using Cu(II)-LMWS chitosan was 32.9 h indicating that the reaction rate is enhanced as much as 16 times more than that of using 18 kDa chitosan-Cu(II) complex. Under the homogeneous reaction condition, the half life time of Cu(II)-LMWS chitosan was 8.75 h. Therefore, we found out that the solubility of Cu(II)-LMWS chitosan makes the difference in the reaction rate as much as 4 times.

키워드

참고문헌

  1. Y. C. Yang, J. A. Baker, and J. R. Ward, Decontamination of chemical warfare agents, Chem. Rev., 92, 1729-1743 (1992). https://doi.org/10.1021/cr00016a003
  2. K. B. Kim, O. G. Tsay, D. A. Atwood, and D. G. Churchill, Destruction and detection of chemical warfare agents, Chem. Rev., 111, 5345-5403 (2011). https://doi.org/10.1021/cr100193y
  3. R. A. Moss, K. W. Alwis, and G. O. Bizzigotti, O-iodosobenzoate: catalyst for the micellar cleavage of activated esters and phosphates, J. Am. Chem. Soc., 105, 681-682 (1983). https://doi.org/10.1021/ja00341a092
  4. H. Morales-Rojas and R. A. Moss, Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles, Chem. Rev., 102, 2497-2521 (2002). https://doi.org/10.1021/cr9405462
  5. R. L. Gustafson, S. Chaberek Jr., and A. E. Martell, A kinetic study of the copper(II) chelate catalyzed hydrolysis of diisopropyl phosphorofluoridate, J. Am. Chem. Soc., 85, 598-601 (1963). https://doi.org/10.1021/ja00888a027
  6. Y. S. Kye, K. H. Jeong, and W. Y. Chung, Decomposition studies of DFP using transition metal catalysts, Appl. Chem. Eng., 21, 1-5 (2010).
  7. N. Sharma and R. Kakkar, Recent advancements on warfare agents/metal oxides surface chemistry and their simulation study, Adv. Mater Lett., 4, 508-521 (2013). https://doi.org/10.5185/amlett.2012.12493
  8. S. Y. Moon, E. Proussaloglou, G. W. Peterson, J. B. DeCoste, M. G. Hall, A. J. Howarth, J. T. Hupp, and O. K. Farha, Detoxification of chemical warfare agents using a $Zr_6$-based metal-organic framework/polymer mixture, Chem. Eur. J., 22, 14864-14868 (2016). https://doi.org/10.1002/chem.201603976
  9. Y. Liu, A. J. Howarth, N. A. Vermeulen, S. Y. Moon, J. T. Hupp, and O. K. Farha, Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks, Coord. Chem. Rev., 346, 101-111 (2017). https://doi.org/10.1016/j.ccr.2016.11.008
  10. M. C. de Koning, M. van Grol, and T. Breijaert, Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks $UiO-66-NH_2$, MOF-808, NU-1000, and PCN-777, Inorg. Chem., 56, 11804-11809 (2017). https://doi.org/10.1021/acs.inorgchem.7b01809
  11. T. Islamoglu, A. Atilgan, S. Y. Moon, G. W. Peterson, J. B. DeCoste, M. Hall, J. T. Hupp, and O. K. Farha, Cerium(IV) vs zirconium(IV) based metal-organic frameworks for detoxification of a nerve agent, Chem. Mater., 29, 2672-2675 (2017). https://doi.org/10.1021/acs.chemmater.6b04835
  12. M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev., 104, 6017-6084 (2004). https://doi.org/10.1021/cr030441b
  13. R Schmuhl, H. M. Krieg and K Keizer, Adsorption of Cu(II) and Cr(VI) ions by chitosan: Kinetics and equilibrium studies, Water SA, 27, 1-7 (2001).
  14. R. Sulakova, R. Hrdina, and G. M. B. Soares, Oxidation of azo textile soluble dyes with hydrogen peroxide in the presence of Cu(II)-chitosan heterogeneous catalysts, Dyes Pigm., 73, 19-24 (2007). https://doi.org/10.1016/j.dyepig.2005.10.004
  15. P. McGowan, C. Rayner and R. Blackburn, The combined synthesis and coloration of poly(lactic acid), Angew. Chem. Int. Ed., 50, 291-294 (2011). https://doi.org/10.1002/anie.201004920
  16. S. L. Bartelt-Hunt, D. R. U. Knappe and M. A. Barlaz, A review of chemical warfare agent simulants for the study of environmental behavior, Crit. Rev. Environ. Sci. Technol., 38, 112-136 (2008). https://doi.org/10.1080/10643380701643650
  17. K. H. Jeong, J. M. Shim, W. Y. Chung, Y. S. Kye, and D. W. Kim, Diisopropyl fluorophosphate (DFP) degradation activity using transition metal-dipicolylamine complexes, Appl. Organomet. Chem., 32, e4383-4387 (2018). https://doi.org/10.1002/aoc.4383
  18. Y. S. Kye, W. Y. Chung, D. W. Kim, Y. K. Park, S. U. Song, and K. H. Jeong, A study on the decomposition of DFP using Cu(II)-chitosan complex, J. KIMST, 15, 699-704 (2012).
  19. R. W. Hay and N. Govan, The $[Cu(tmen)(OH)(OH_2)]^+$ promoted hydrolysis of 2,4-dinitrophenyl diethyl phosphate and O-isopropyl methylphosphonofluoridate (Sarin) (tmen = N,N,N',N'-tetramethyl- 1,2-diaminoethane), Polyhedron, 17, 2079-2085 (1998). https://doi.org/10.1016/S0277-5387(97)00433-6
  20. J. W. Nah and M. K. Jang, Spectroscopic characterization and preparation of low molecular, water-soluble chitosan with free-amine group by novel method, J. Polym. Sci. A: Polym. Chem., 40, 3796-3803 (2002). https://doi.org/10.1002/pola.10463
  21. O. A. C. Monteiro Jr. and C. Airoldi, Some thermodynamic data on copper-chitin and copper-chitosan biopolymer interactions, J. Colloid Interface Sci., 212, 212-219 (1999). https://doi.org/10.1006/jcis.1998.6063
  22. K. Yu, J. Ho, E. McCandlish, B. Buckley, R. Patel, Z. Li, and N. C. Shapley, Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications, Colloid Surf. A: Physicochem. Eng. Asp., 425, 31-41 (2013). https://doi.org/10.1016/j.colsurfa.2012.12.043
  23. S. Z. Bajwa and P. A. Lieberzeit, Recognition principle of $Cu^{2+}$- imprinted polymers - Assessing interactions by combined spectroscopic and mass-sensitive measurements, Sens. Actuators, B, 207, 976-980 (2015). https://doi.org/10.1016/j.snb.2014.07.066
  24. Y. Cai, L. Zheng, and Z. Fang, Selective adsorption of Cu(II) from an aqueous solution by ion imprinted magnetic chitosan microspheres prepared from steel pickling waste liquor, RSC Adv., 5, 97435-97445 (2015). https://doi.org/10.1039/C5RA16547D