References
- A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, On hydrogen and hydrogen energy strategies I : Current status and needs, Renew. Sustain. Energy Rev., 9, 255-271 (2005). https://doi.org/10.1016/j.rser.2004.05.003
- S. K. Ngoh and D. Njomo, An overview of hydrogen gas production from solar energy, Renew. Sustain. Energy Rev., 16, 6782-6792 (2012). https://doi.org/10.1016/j.rser.2012.07.027
- R. Navarro, M. Pena, and J. Fierro, Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass, Chem. Rev., 107, 3952-3991 (2007). https://doi.org/10.1021/cr0501994
-
X. Li, R. Singh, K. Dudeck, K. Berchtold, and B. Benicewicz, Influence of polybenzimidazole main chain structure on
$H_2/CO_2$ separation at elevated temperatures, J. Membr. Sci., 461, 59-68 (2014). https://doi.org/10.1016/j.memsci.2014.03.008 - N. Brandon and Z. Kurban, Clean energy and the hydrogen economy, Philos. Trans. A. Math. Phys. Eng. Sci., 375, 1-17 (2017).
- M. Ball and M. Weeda, The hydrogen economy - Vision or reality?, Int. J. Hydrogen Energy, 40, 7903-7919 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.032
- A. H asanoglu, I. Demirci, and A. Secer, Hydrogen production by gasification of Kenaf under subcritical liquid-vapor phase conditions, Int. J. Hydrogen Energy, 4, 14127-14136 (2019).
- O. Ozcan and A. Akin, Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: An optimization study, Int. J. Hydrogen Energy, 44, 14117-14126 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.211
- G. Solowski, M. Shalaby, H. Abdallah, A. Shaban, and A. Cenian, Production of hydrogen from biomass and its separation using membrane technology, Renew. Sustain. Energy Rev., 82, 3152-3167 (2018). https://doi.org/10.1016/j.rser.2017.10.027
- Y. Li and T. Chung, Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation, J. Membr. Sci., 308, 128-135 (2008). https://doi.org/10.1016/j.memsci.2007.09.053
- S. Sircar and T. Golden, Separation science and technology purification of hydrogen by pressure swing, Sep. Sci. Technol., 35, 667-687 (2000). https://doi.org/10.1081/SS-100100183
- S. Sircar, Production of hydrogen and ammonia synthesis gas by pressure swing adsorption, Sep. Sci. Technol., 25, 1087-1099 (1990). https://doi.org/10.1080/01496399008051839
- S. Sircar and W. Kratz, Simultaneous production of hydrogen and carbon dioxide from steam reformer off-gas by pressure swing adsorption, Sep. Sci. Technol., 23, 2397-2415 (1988). https://doi.org/10.1080/01496398808058461
- B. Wang, R. Zhou, L. Yu, L. Qiu, X. Zhi, and X. Zhang, Evaluation of mass transfer correlations applying to cryogenic distillation process with non-equilibrium model, Cryogenics, 97, 22-30 (2019). https://doi.org/10.1016/j.cryogenics.2018.11.010
-
A. Yousef, W. El-Maghlany, Y. Eldrainy, and A. Attia, New approach for biogas purification using cryogenic separation and distillation process for
$CO_2$ capture, Energy, 156, 328-351 (2018). https://doi.org/10.1016/j.energy.2018.05.106 - R. Bhattacharyya, K. Bhanja, and S. Mohan, Simulation studies of the characteristics of a cryogenic distillation column for hydrogen isotope separation, Int. J. Hydrogen Energy, 41, 5003-5018 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.106
-
C. Tarun, E. Croiset, P. Douglas, M. Gupta, and M. Chowdhury, Techno-economic study of
$CO_2$ capture from natural gas based hydrogen plants, Int. J. Greenh. Gas Control, 1, 55-61 (2007). https://doi.org/10.1016/S1750-5836(07)00036-9 - G. Ji and M. Zhao, Membrane separation technology in carbon capture, In: Y. Yun (ed), Recent Advances in Carbon Capture and Storage, 59-90, InTechOpen, London, UK (2017).
- G. Bernado, T. Araujo, T. Silva Lpoes, J. Sousa, and A. Mendes, Recent advances in membrane technologies for hydrogen purification, Int. J. Hydrogen Energy, 45, 7313-7338 (2020). https://doi.org/10.1016/j.ijhydene.2019.06.162
- E. Lasseuguette and M. Ferrari, Polymer membranes for sustainable gas separation, In: G. Szekely and A. Livingston (eds), Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing, 265-296, Elsevier, Amsterdam, the Netherlands (2019).
- P. S. Puri, Membrane Engineering for the Treatment of Gases: Volume 1: Gas-Separation Problems With Membranes, E. Drioli and G. Barbieri, 215-243, Royal Society of Chemistry (2011).
- Gas separation membrane market, by type, application and region-grow prospects and competitive analysis, 2016-2024, Credence Research (2017).
- X. Huang, H. Yao, Z. Cheng, and Y. Chen, Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production, Storage, and Utilization, S. Bashir and J. L. Liu, 85-112, Mater. Sci. (2017).
- J. O. Wan, H. C. Park, and Y. S. Gang, Polymeric gas separation membranes, Polymer Science and Technology, 10, 170-178 (1999).
- E. S. Ryi and J. S. Park, Research trend of Pd-based hydrogen membrane, J. Ind. Eng. Chem., 14, 46-53 (2011). https://doi.org/10.1021/ie50145a023
- S. K. Ryi, The Study of Pd-Cu-Ni Temary Alloyed Hydrogen Membranes Deposited on Porous Nickel Supports, PhD Dissertation, Korea University, Korea (2007).
-
E. H. Back, Pre-combustion
$CO_2$ chapter technology, News & Information for Chemical Engineers, 2, 151-155 (2009). -
K. A. Berchtold, R. P. Singh, K. W. Dudeck, G. J. Dahe, C. F. Welch, and D. Yang, High-temperature polymer-based membrane systems for pre-combustion
$CO_2$ capture, Los Alamos National Laboratory, NETL CCT, 10, 1-37 (2012). - K. Berchtold, R. Singh, J. Young, and K. Dudect, Polybenzimidazole composite membranes for high temperature synthesis gas separations, J. Membr. Sci., 415, 265-270 (2012). https://doi.org/10.1016/j.memsci.2012.05.005
- T. Merkel, M. Zhou, and R. Baker, Carbon dioxide capture with membranes at an IGCC power plant, J. Membr. Sci., 389, 441-450 (2012). https://doi.org/10.1016/j.memsci.2011.11.012
- S. H. Han, J. E. Lee, K. H. Lee, H. B. Park, and Y. M. Lee, Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement, J. Membr. Sci., 357, 143-151 (2010). https://doi.org/10.1016/j.memsci.2010.04.013
-
X. Li, R. Singh, K. Dudeck, and K. Berchtold, Influence of polybenzimidazole main chain structure on
$H_2/CO_2$ separation at elevated temperatures, J. Membr. Sci., 461, 59-68 (2014). https://doi.org/10.1016/j.memsci.2014.03.008 - H. Kita, Materials Scienece of Membranes for Gas and Vapor Separation, Y. Yampolskii, I. Pinnau and B. D. Freeman, 337-354, John Wiley & Sons (2006).
- J. Wijmans and R. Baker, The solution-diffusion model: A review, J. Membr. Sci., 107, 1-21 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
- L. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62, 165-185 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
-
S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, and M. Guiver, Advances in high permeability polymer-based membrane materials for
$CO_2$ separations, Energy. Environ. Sci., 9, 1863-1890 (2016). https://doi.org/10.1039/C6EE00811A - T. Ward and T. Dao, Model of hydrogen permeation behavior in palladium membranes, J. Membr. Sci., 153, 211-213 (1999). https://doi.org/10.1016/S0376-7388(98)00256-7
- Z. Tao, L. Yan, J. Qjao, B. Wang, L. Zhang, and J. Zhang, A review of advanced proton-conducting materials for hydrogen separation, Prog. Mater. Sci., 74, 1-50 (2015). https://doi.org/10.1016/j.pmatsci.2015.04.002
- U. Balachandran, T. Lee, L. Chan, S. Song, J. Picciolo, and S. Dorris, Hydrogen separation by dense cermet membranes, Fuel, 85, 150-155 (2006). https://doi.org/10.1016/j.fuel.2005.05.027
- X. Chen, N. Tien-Binh, S. Kaliaguine, and D. Rodrigue, Polyimide membranes for gas separation: Synthesis, processing and properties, in C. Murphy (ed), Polyimides Synthesis, Applications and Research, 1-71, Nova Sciences Publishers, Hauppauge, New York, USA (2016).
- J. N. Barsema, G. C. Kapantaidakis, N. Vegt, G. Koops, and M. Wessling, Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide, J. Membr. Sci., 216, 195-205 (2003). https://doi.org/10.1016/S0376-7388(03)00071-1
- Q. Song, S. Nataraj, M. Roussenova, J. Tan, D. Hughes, W. Li, P. Bourgoin, M. Alam, A. Cheetham, S. Al-Muhtaseb, and E. Sivaniab, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation, Energy Environ. Sci., 5, 8359-8369 (2012). https://doi.org/10.1039/c2ee21996d
- M. Djebbau, Q. Nguyen, R. Clement, and Y. Germain, Pervaporation of aqueous ester solutions through hydrophobic poly(ether-block-amide) copolymer membranes, J. Membr. Sci., 146, 125-133 (1998). https://doi.org/10.1016/S0376-7388(98)00090-8
- M. Rezac and T. John, Correlation of penetrant transport with polymer free volume: Additional evidence from block copolymers, Polymer, 39, 599-603 (1998). https://doi.org/10.1016/S0032-3861(97)00302-9
-
S. Reijerkerk, Polyether based block copolymer membranes for
$CO_2$ separation, Ipskamp Drukkers B. V., Enschede, The Netherlands (2010). - J. H. Kim, S. Y. Ha, and Y. M. Lee, Gas permeation of poly(amide-6-b-ethylene oxide) copolymer, J. Membr. Sci., 190, 179-193 (2001). https://doi.org/10.1016/S0376-7388(01)00444-6
- H. Vogel and C. Marvel, Polybenzimidazoles, new thermally stable polymers, J. Polym. Sci., 50, 511-539 (1961). https://doi.org/10.1002/pol.1961.1205015419
- S. Qing, W. Huang, and D. Yan, Synthesis and characterization of thermally stable sulfonated polybenzimidazoles, Eur. Polym. J., 41, 1589-1595 (2005). https://doi.org/10.1016/j.eurpolymj.2005.02.001
- Y. Tsur, H. H. Levine, and M. Levy, Effects of structure on properties of some new aromatic-aliphatic polybenzimidazoles, J. Polym. Sci. Polym. Chem., 12, 1515-1529 (1974). https://doi.org/10.1002/pol.1974.170120714
- S. Sivaram, The history of polymers: The origins and the growth of a science, 1-55, National Laboratory, India (1937).
- H. Vogel and C. Marvel, Polybenzimidazoles, new thermally stable polymers, J. Polym. Sci., 50, 511-539 (1961). https://doi.org/10.1002/pol.1961.1205015419
- H. Vogel and C. Marvel Polybenzimidazoles. II, J. Polym. Sci. Part. A, 1, 1531-1541 (1963).
- L. Xiao, H. Zhang, E. Scanlon, L. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B. Benicewicz, High-temperature polybenzimidazole fuel cell membranes via a sol-gel process, Chem. Mater., 17, 5328-5333 (2005). https://doi.org/10.1021/cm050831+
- E. K. Kim, S. Y. Lee, S. Y. Nam, S. J. Yoo, J. Y. Kim, J. H. Jang, D. Henkensmeier, H. J. Kim, and J. C. Lee, Synthesis of high molecular weight polybenzimidazole using a highly pure monomer under mild conditions, Polym. Int., 66, 1812-1818 (2017). https://doi.org/10.1002/pi.5426
- J. Higgins and C. Marvel, Benzimidazole polymers from aldehydes and tetraamines, J. Polym. Sci. A1, 8, 171-177 (1970). https://doi.org/10.1002/pol.1970.150080116
- K. Fishel, A. Gulledge, A. Pingitore, J. Hoffman, W. Steckle, and B. Benicewicz, Solution polymerization of polybenzimidazole, Polym. Sci. A1, 54, 1795-1802 (2016). https://doi.org/10.1002/pola.28041
- D. Gopalakrishnan, R. Anbazhagan, and K. Aravindhan, Comfort properties of Polybenzimidazole fiber, Text. Res. J., 48, 31-35 (2006).
- K. Wang, Q. Yang, T. Chung, and R. Rajagopalan, Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall, Chem. Eng. Sci., 64, 1577-1584 (2009). https://doi.org/10.1016/j.ces.2008.12.032
- E. Strauss, Strength of polybenzimidazole and phenolic laminate- to-metal joints, Polym. Eng. Sci., 6, 24-29 (1966). https://doi.org/10.1002/pen.760060105
- J. Lobato, P. Canizares, M. Rodrigo, J. Linares, and J. Aguilar, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, J. Membr. Sci., 306, 47-55 (2007). https://doi.org/10.1016/j.memsci.2007.08.028
- S. K. Kim, K. H. Kim, J. O. Park, K. Kim, T. Ko, S. W. Choi, C. Pak, H. Chang, and J. C. Lee, Highly durable polymer electrolyte membranes at elevated temperature: Cross-linked copolymer structure consisting of poly(benzoxazine) and poly(benzimidazole), J. Power Sources, 226, 346-353 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.019
- I. Valtcheva, S. Kumbharkar, J. Kim, and Y. Bhole, Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments, J. Membr. Sci., 457, 62-72 (2014). https://doi.org/10.1016/j.memsci.2013.12.069
- K. Berchtold, R. Singh, J. Young, and K. Dudeck, Polybenzimidazole composite membranes for high temperature synthesis gas separations, J. Membr. Sci., 415, 265-270 (2012). https://doi.org/10.1016/j.memsci.2012.05.005
-
S. Kumbharkar, Y. Liu, and K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for
$H_2/CO_2$ separation, J. Membr. Sci., 375, 231-240 (2011). https://doi.org/10.1016/j.memsci.2011.03.049 - D. Pesiri, B. Jorgensen, and R. Dye, Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide, J. Membr. Sci., 218, 11-18 (2003). https://doi.org/10.1016/S0376-7388(03)00129-7
- A. L. Gulledge, Advancements in the design, Synthesis, and Application of Polybenzimidazoles, PhD Dissertation, University of South Carolina, Clumbia (2014).
- J. Higgins and C. Marvel, Benzimidazole polymers from aldehydes and tetraamines, J. Polym. Sci A1, 8, 171-177 (1970). https://doi.org/10.1002/pol.1970.150080116
- E. K. Kim, S. Y. Lee, S. Y. Nam, S. J. Yoo, J. Y. Kim, J. H. Jang, D. Henkensmeier, H. J. Kim, and J. C. Lee, Synthesis of high molecular weight polybenzimidazole using a highly pure monomer under mild conditions, Polym. Int., 66, 1812-1818 (2017). https://doi.org/10.1002/pi.5426
- K. Fishel, A. Gulledge, A. Pingitore, J. Hoffman, W. Steckle, and B. Benicewicz, Solution polymerization of polybenzimidazole, J. Polym. Sci. A. Polym. Chem., 54, 1795-1802 (2016). https://doi.org/10.1002/pola.28041
- M. K. Jeong and S. Y. Nam, Reviews on preparation and membrane applications of polybenzimidazole polymers, Membr. J., 26, 253-265 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.253
- D. Mecerreyes, H. Grande, O. Miguel, and E. Ochoteco, Porous polybenzimidazole membranes doped with phosphoric acid: Highly proton-conducting solid electrolytes, Chem. Mater., 16, 604-607 (2004). https://doi.org/10.1021/cm034398k
-
S. Kumbharkar, Y. Liu, and K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for
$H_2/CO_2$ separation, J. Membr. Sci., 375, 231-240 (2011). https://doi.org/10.1016/j.memsci.2011.03.049 - K. Wang and T. Chung, Polybenzimidazole nanofiltration hollow fiber for cephalexin separation, AIChE J., 59, 215-228 (2012). https://doi.org/10.1002/aic.13781
-
G. Dong, H. Li, and V. Chen, Factors affect defect-free
$Matrimid^{(R)}$ hollow fiber gas separation performance in natural gas purification, J. Membr. Sci., 353, 17-27 (2010). https://doi.org/10.1016/j.memsci.2010.02.012 - M. Donohum, B. Minhas, and S. Y. Lee, Permeation behavior of carbon dioxide-methane mixtures in cellulose acetate membranes, J. Membr. Sci., 42, 197-214 (1989). https://doi.org/10.1016/S0376-7388(00)82376-5
- K. Wang, T. Chung, and J. Qin, Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process, J. Membr. Sci., 300, 6-12 (2007). https://doi.org/10.1016/j.memsci.2007.05.035
- Y. S. Lee, J. H. Shim, and J. Y. Suh, A finite outlet volume correction to the time lag method: The case of hydrogen permeation through V-alloy and Pd membranes, J. Membr. Sci., 585, 253-259 (2019). https://doi.org/10.1016/j.memsci.2019.05.048
- Y. Liu, R. Wang, and T. Chung, Chemical cross-linking modification of polyimide membranes for gas separation, J. Membr. Sci., 189, 231-239 (2001). https://doi.org/10.1016/S0376-7388(01)00415-X
- S. Kumbharkar, P. Karadkar, and U. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture, J. Membr. Sci., 286, 161-169 (2006). https://doi.org/10.1016/j.memsci.2006.09.030
- S. Kumbharkar and U. Kharul, Investigation of gas permeation properties of systematically modified polybenzimidazoles by N-substitution, J. Membr. Sci., 357, 134-142 (2010). https://doi.org/10.1016/j.memsci.2010.04.014
- K. Berchtold, R. Singh, J. Young, and K. Dudeck, Polybenzimidazole composite membranes for high temperature synthesis gas separations, J. Membr. Sci., 415, 265-270 (2012). https://doi.org/10.1016/j.memsci.2012.05.005
-
X. Li, R. Singh, K. Dudeck, K. Berchtold, and B. Benicewicz, Influence of polybenzimidazole main chain structure on
$H_2/CO_2$ separation at elevated temperatures, J. Membr. Sci., 461, 59-68 (2014). https://doi.org/10.1016/j.memsci.2014.03.008 - R. Singh, X. Li, K. Dudeck, and B. Benicewicz, Polybenzimidazole based random copolymers containing hexafluoroisopropylidene functional groups for gas separations at elevated temperatures, Polymer, 119, 134-141 (2017). https://doi.org/10.1016/j.polymer.2017.04.075
- L. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- K. H. Kim, S. W. Choi, J. O. Park, S. K. Kim, M. Y. Lim, K. H. Kim, T. Ko, and J. C. Lee, Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates for reinforced pore-filling membranes in fuel cells operating at high temperatures, J. Membr. Sci., 536, 76-85 (2017). https://doi.org/10.1016/j.memsci.2017.04.058
- I. Valtcheva, P. Marchetti, and A. Livingston, Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): Analysis of crosslinking reaction mechanism and effects of reaction parameters, J. Membr. Sci., 493, 568-579 (2015). https://doi.org/10.1016/j.memsci.2015.06.056
- J. Mchattie, W. Koros, and D. Paul, Gas transport properties of polysulphones: 2. Effect of bisphenol connector groups, Polymer, 32, 2618-2625 (1991). https://doi.org/10.1016/0032-3861(91)90343-H
- N. Jusoh, Y. Yeong, K. Lau, and A. Shzriff, Mixed matrix membranes comprising of ZIF-8 nanofillers for enhanced gas transport properties, Procedia. Eng., 148, 1259-1265 (2016). https://doi.org/10.1016/j.proeng.2016.06.499
- H. Lin, E. Wagner, B. Freemane, L. Toy, and R. Gupta, Plasticization-enhanced hydrogen purification using polymeric membranes, Science, 311, 639-642 (2006). https://doi.org/10.1126/science.1118079
- B. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999). https://doi.org/10.1021/ma9814548
-
A. Naderi, A. Tashvigh, and T. Chung,
$H_2/CO_2$ separation enhancement via chemical modification of polybenzimidazole nanostructure, J. Membr. Sci., 572, 343-349 (2019). https://doi.org/10.1016/j.memsci.2018.11.020 - P. Li, Z. Wang, Z. Qiao, Y. Liu, X. Cao, W. Li, J. Wang, and S. Wang, Recent developments in membranes for efficient hydrogen purification, J. Membr. Sci., 495, 130-168 (2015). https://doi.org/10.1016/j.memsci.2015.08.010
- D. D'Alessandro, B. Smit, and J. Long, Carbon dioxide capture: Prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082 (2010). https://doi.org/10.1002/anie.201000431
-
B. Low, Y. Xizo, T. Chung, and Y. Liu, Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on
$H_2/CO_2$ separation, Macromolecules, 41, 1297-1309 (2008). https://doi.org/10.1021/ma702360p - H. Lin, Integrated membrane material and process development for gas separation, Curr. Opin. Chem. Eng., 4, 54-61 (2014). https://doi.org/10.1016/j.coche.2014.01.010
- A. Naderi, A. Tashvigh, T. Chung, M. Weber, and C. Maletzko, Molecular design of double crosslinked sulfonated polyphenylsulfone /polybenzimidazole blend membranes for an efficient hydrogen purification, J. Membr. Sci., 563, 726-733 (2018). https://doi.org/10.1016/j.memsci.2018.06.033
- A. Naderi, T. Chung, M. Weber, and C. Maletzko, High performance dual-layer hollow fiber membrane of sulfonated polyphenylsulfone/ polybenzimidazole for hydrogen purification, J. Membr. Sci., 591, 117292 (2019). https://doi.org/10.1016/j.memsci.2019.117292
-
L. Zhu, M. Swihart, and H. Lin, Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane
$H_2/CO_2$ separation, J. Mater. Chem. A, 5, 19914-19923 (2017). https://doi.org/10.1039/C7TA03874G -
Y. Wang, S. H. Goh, and T. Chung, Miscibility study of
$Torlon^{(R)}$ polyamide-imide with$Matrimid^{(R)}$ 5218 polyimide and polybenzimidazole, Polymer, 48, 2901-2909 (2007). https://doi.org/10.1016/j.polymer.2007.03.040 -
O. David, D. Gorri, A. Urtiaga, and I. Ortiz, Mixed gas separation study for the hydrogen recovery from
$H_2/CO/N_2/CO_2$ post combustion mixtures using a Matrimid membrane, J. Membr. Sci., 378, 359-368 (2011). https://doi.org/10.1016/j.memsci.2011.05.029 - E. Foldes, E. Fekete, F. Karasz, and B. Pukanszky, Interaction, miscibility and phase inversion in PBI/PI blends, Polymer, 41, 975-983 (2000). https://doi.org/10.1016/S0032-3861(99)00236-0
- P. Musto, F. Karasz, and W. Macknight, Hydrogen bonding in polybenzimidazole/poly (ether imide) blends: A spectroscopic study, Macromolecules, 24, 4762-4769 (1991). https://doi.org/10.1021/ma00017a006
- S. Hosseini, M. Teoh, and T. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer, 49, 1594-1603 (2008). https://doi.org/10.1016/j.polymer.2008.01.052
- N. Panapitiya, S. Wijenayake, D. Nguyen, C. Karunaweera, Y. Huang, K. Balkus, I. Musselman, and J. Ferraris, Compatibilized immiscible polymer blends for gas separations, Materials, 9, 1-23 (2016). https://doi.org/10.3390/ma9010001
- A. Naderi, A. Tashvigh, T. Chung, M. Weber, and C. Maletzko, Molecular design of double crosslinked sulfonated polyphenylsulfone/polybenzimidazole blend membranes for an efficient hydrogen purification, J. Membr. Sci., 563, 726-733 (2018). https://doi.org/10.1016/j.memsci.2018.06.033
- H. Suhaimi, L. Peng, and A. Ahmad, Hydrogen purification using polybenzimidazole mixed matrix membrane with palladium nanoparticles stabilized by polyethylene glycol, Chem. Eng. Technol., 40, 631-638 (2017). https://doi.org/10.1002/ceat.201600457
- R. Singh, X. Li, K. Dudeck, B. Benicewicz, and K. Berchtold, Polybenzimidazole based random copolymers containing hexafluoroisopropylidene functional groups for gas separations at elevated temperatures, Polymer, 119, 134-141 (2017). https://doi.org/10.1016/j.polymer.2017.04.075
- J. Moon, A. Bridge, C. D'Ambra, B. Freeman, and D. Paul, Gas separation properties of polybenzimidazole/thermally-rearranged polymer blends, J. Membr. Sci., 582, 182-193 (2019). https://doi.org/10.1016/j.memsci.2019.03.067
- T. Su, I. Ball, J. Conklin, S. Huang, R. Larson, S. Nguyen, B. Lew, and R. Kener, Polyaniline/polyimide blends for pervaporation and gas separation studies, Synth. Met., 84, 801-802 (1997). https://doi.org/10.1016/S0379-6779(96)04153-7
- J. Lainez, B. Zornoza, M. Carta, R. Evans, N. Mckeown, C. Tellez, and J. Coronas, Hydrogen separation at high temperature with dense and asymmetric membranes based on PIM-EA(H2)-TB/PBI blends, Ind. Eng. Chem. Res., 57, 16909-16916 (2018). https://doi.org/10.1021/acs.iecr.8b04209
- T. Yang, G. Shi, and T. Chung, Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purifi cation at high temperatures, Adv. Energy. Mater., 2, 1358-1367 (2012). https://doi.org/10.1002/aenm.201200200
- T. Yang and T. Chung, Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation, J. Mater. Chem. A, 1, 6081-6090 (2013). https://doi.org/10.1039/c3ta10928c
- G. Shi, H. Chen, Y. Jean, and T. Chung, Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation, Polymer, 54, 774-783 (2013). https://doi.org/10.1016/j.polymer.2012.11.056
-
J. Lainez, B. Zornoza, C. Tellez, and J. Coronas, On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for
$H_2/CO_2$ separation, J. Mater. Chem. A, 4, 14334-14341 (2016). https://doi.org/10.1039/C6TA06438H - S. Y. Kong, D. H. Kim, D. Henkensmeier, H. J. Kim, H. C. Ham, J. Han, S. P. Yoon, C. W. Yoon, and S. H. Choi, Ultrathin layered Pd/PBI-HFA composite membranes for hydrogen separation, Sep. Purif. Technol., 179, 486-493 (2017). https://doi.org/10.1016/j.seppur.2017.02.033
- E. Favre, Comprehensive Membrane Science and Engineering, E. Drioli, L. Giomo, E. Fontananova, 159-167, Elsevier (2017).
- M. Maarefian, S. Bandehali, S. Azami, H. Sanaeepur, and A. Moghadassi, Hydrogen recovery from ammonia purge gas by a membrane separator: A simulation study, Int, J. Energ. Res., 43, 8217-8229 (2019).
-
H. Z. Chen and T. Chung,
$CO_2$ -selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance, Int. J. Hydrogen Energy, 37, 6001-6011 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.124 - S. Hosseini, M. Omidkhah, A. Moghaddam, V. Pirouzfar, W. Krantz, and N. Tan, Enhancing the properties and gas separation performance of PBI-polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process, Sep. Purif. Technol., 122, 278-289 (2014), https://doi.org/10.1016/j.seppur.2013.11.021
- B. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999). https://doi.org/10.1021/ma9814548
- H. B. Park, C. H. Jung, Y. M. Lee, A. Hill, S. Pas, S. Mudie, E. Wagner, B. Freeman, and D. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science, 318, 254-257 (2007). https://doi.org/10.1126/science.1146744
-
M. Omidvar, H. Nguyen, L. Huang, C. Doherty, A. Hill, C. Stafford, X. Feng, M. Swihart, and H. Lin, Polybenzimidazole-derived carbon molecular sieve membranes with "Hourglass" nanostructures achieving
$H_2/CO_2$ separation properties above upper bounds, J. Chem. Inf. Model., 53, 1-19 (2019). https://doi.org/10.1021/ci300547g - M. Rungta, G. Wenz, C. Zhang, L. Xu, W. Qiu, and J. Adams, Carbon molecular sieve structure development and membrane performance relationships, Carbon, 115, 237-248 (2017). https://doi.org/10.1016/j.carbon.2017.01.015
-
S. Hosseini and T. Chung, Carbon membranes from blends of PBI and polyimides for
$N_2/CH_4$ and$CO_2/CH_4$ separation and hydrogen purification, J. Membr. Sci., 328, 174-185 (2009). https://doi.org/10.1016/j.memsci.2008.12.005 - J. Francisco, J. Garcia, M. Bastarrachea, D. Paul, B. Freeman, and M. Vega, CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance, J. Membr. Sci., 597, 117703 (2020). https://doi.org/10.1016/j.memsci.2019.117703
- V. Giel, Z. Moravkova, J. Peter, and M. Trchova, Thermally treated polyaniline/polybenzimidazole blend membranes: Structural changes and gas transport properties, J. Membr. Sci., 537, 315-322 (2017). https://doi.org/10.1016/j.memsci.2017.04.062
- W. Jiao, Y. Ban, Z. Shi, X. Jiang, Y. Li, and W. Yang, Gas separation performance of supported carbon molecular sieve membranes based on soluble polybenzimidazole, J. Membr. Sci., 533, 1-10 (2017). https://doi.org/10.1016/j.memsci.2017.03.022
- D. Weinkauf and D. Paul, Gas transport properties of thermotropic liquid-crystalline copolyesters. II. The effects of copolymer composition, J. Polym. Sci. B. Polym. Phys., 30, 837-349 (1992). https://doi.org/10.1002/polb.1992.090300805
- G. Illing, K. Hellgardt, M. Schonert, R. Wakeman, and A. Jungbauer, Towards ultrathin polyaniline films for gas separation, J. Membr. Sci., 253, 199-208 (2005). https://doi.org/10.1016/j.memsci.2004.12.031
- M. Rezac and B. Schoberl, Transport and thermal properties of poly(ether imide)/acetylene-terminated monomer blends, J. Membr. Sci., 156, 211-222 (1999). https://doi.org/10.1016/S0376-7388(98)00346-9
- A. Tashvigh, Y. Feng, M. Weber, C. Maletzko, and T. Chung, 110th anniversary: Selection of cross-linkers and cross-linking procedures for the fabrication of solvent-resistant nanofiltration membranes: A review, Ind. Eng. Chem. Res., 58, 10678-10691 (2019). https://doi.org/10.1021/acs.iecr.9b02408
- D. Xing, S. Chan, and T. Chung, The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration, Green Chem., 16, 1383-1392 (2014). https://doi.org/10.1039/C3GC41634H
- T. H. Kim, T. W. Lim, and J. C. Lee, High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting, J. Power Sources, 172, 172-179 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.040
- H. Sun, C. Xie, H. Chen, and S. Almheiri, A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane, Appl. Energy, 160, 937-944 (2015). https://doi.org/10.1016/j.apenergy.2015.02.053
- S. Angional, P. Righetti, E. Quartarone, E. Dilena, P. Mustarelli, and A. Magistris, Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs, Int. J. Hydrogen. Energy, 36, 7174-7182 (2011). https://doi.org/10.1016/j.ijhydene.2011.03.016
- A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris, F. Maestroni, M. Parachini, L. Garlaschelli, and P. Righetti, Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications, J. Power Sources, 160, 175-180 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.081
- D. Henkensmeier, H. Cho, M. Brela, A. Michalak, A. Dyck, W. Germer, N. Duong, J. H. Jang, H. J. Kim, N. S. Woo, and T. H. Lim, Anion conducting polymers based on ether linked polybenzimidazole (PBI-OO), Int. J. Hydrogen Energy., 39, 2842-2853 (2014). https://doi.org/10.1016/j.ijhydene.2013.07.091
- S. Singha, T. Jana, J. Modestra, A. Kumar, and S. Mohan, Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells, J. Power Sources, 317, 143-152 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.103
- X. Glipa, M. Haddad, D. Jones, and J. Roziere, Synthesis and characterisation of sulfonated polybenzimidazole: A highly conducting proton exchange polymer, Solid State Ionics, 97, 323-331 (1997). https://doi.org/10.1016/S0167-2738(97)00032-5
- S. W. Chuang and S. L. Hsu, Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications, J. Polym. Sci. A. Polym. Chem., 44, 4508-4513 (2005).
- L. Xiao, H. Zhahg, T. Jana, E. Scanlon, R. Chen, E. Choe, L. Ramanathan, S. Yu, and B. Benicewicz, Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications, Fuel Cells, 5, 287-295 (2005). https://doi.org/10.1002/fuce.200400067
- M. Geormezi, V. Deimede, N. Gourdoupi, N. Triantafyllopoulos, S. Neophytides, and J. K. Kallitsis, Novel pyridine-based poly (ether sulfones) and their study in high temperature PEM fuel cells, Macromolecules, 41, 9051-9056 (2008). https://doi.org/10.1021/ma801678h
- Z. Yang and F. Luo, Pt nanoparticles deposited on dihydroxy-polybenzimidazole wrapped carbon nanotubes shows a remarkable durability in methanol electro-oxidation, Int. J. Hydrogen Energy, 42, 507-514 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.148
- X. Li, X. Chen, and B. Benicewicz, Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs), J. Power Sources, 243, 796-804 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.033
- S. G. Lee, C. Y. Han, Y. S. Seo, J. H. Lee, and B. S. Seo, Shell-and tube type reactor for reforming natural gas and method for producing syngas or hydrogen gas using the same, KR Patent 10-2016-0047386 (2016).
- D. J. Kang, H. W. Park, M. S. Jang, and J. H. Sang, Hydrogen industry: the dawn of the hydrogen economy, Research Color Series#9, Hyundai Motor Group, 13-22 (2020).