DOI QR코드

DOI QR Code

Research Trends of Polybenzimidazole-based Membranes for Hydrogen Purification Applications

수소 분리 응용을 위한 폴리벤즈이미다졸 기반 분리막의 연구 동향

  • Kim, Ji Hyeon (Department of Materials Engineering and Convergenece Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Kihyun (Department of Materials Engineering and Convergenece Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergenece Technology, Engineering Research Institute, Gyeongsang National University)
  • 김지현 (경상대학교 나노신소재융합공학과) ;
  • 김기현 (경상대학교 나노신소재융합공학과) ;
  • 남상용 (경상대학교 나노신소재융합공학과)
  • Received : 2020.07.17
  • Accepted : 2020.08.25
  • Published : 2020.10.12

Abstract

As the demand for eco-friendly energy increases to overcome the energy shortage and environmental pollution crisis, hydrogen economy has been proposed as a potential solution. Accordingly, an economical and efficient hydrogen production is considered to be an essential industrial process. Research on applying hydrogen separation membranes for H2/CO2 separation to the production of highly concentrated hydrogen by purifying H2 and capturing CO2 simultaneously from synthetic gas produced by gasification is in progress nowadays. In high temperature environments, the membrane separation process using glassy polymeric membrane with H2 selectivity has the potential for CO2 capture performance, and is an energy and cost effective system since polybenzimicazole (PBI)-based separators show excellent chemical and mechanical stability under high-temperature operation conditions. Thus, the development of high-performance PBI hydrogen separators has been rapidly progressing in recent years. This overview focuses on the recent developments of PBI-based membranes including structure modified, cross-linked, blended and carbonized membranes for applications to the industrial hydrogen separation process.

에너지 부족 및 환경 오염위기를 극복하기 위해 친환경 에너지에 대한 수요가 증가함에 따라 잠재적인 해결책으로 수소 경제가 제안되고 있다. 이에 따라 경제적이고 효율적인 수소 생산은 필수적인 산업공정으로 여겨지고 있으며, 연소 전 석탄의 가스화 또는 천연가스 개질반응에 의해 생성된 합성가스에서 H2를 정제하는 동시에 CO2를 포집하는 H2/CO2 분리에 수소 분리막을 적용하는 연구가 지속되고 있다. 고온 환경에서 H2에 선택적인 유리질 고분자 막은 CO2 포집 성능의 잠재력을 갖추고 있으며, 에너지 및 비용 면에서 효율적인 시스템이다. 폴리벤즈이미다졸(PBI) 기반 수소 분리막은 고온의 구동 조건에서도 탁월한 화학적·기계적 안정성을 보여주고 있어 고 성능의 PBI 수소 분리막 개발이 최근 급속도로 진행되고 있다. 본 총설에서는 산업적으로 적용 가능성이 있는 수소 분리막 개발을 위해 PBI를 기반으로 한 구조 변형 막, 가교 막, 혼합 막, 탄화 막의 최근 발전에 대하여 중점적으로 다루고 있다.

Keywords

References

  1. A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, On hydrogen and hydrogen energy strategies I : Current status and needs, Renew. Sustain. Energy Rev., 9, 255-271 (2005). https://doi.org/10.1016/j.rser.2004.05.003
  2. S. K. Ngoh and D. Njomo, An overview of hydrogen gas production from solar energy, Renew. Sustain. Energy Rev., 16, 6782-6792 (2012). https://doi.org/10.1016/j.rser.2012.07.027
  3. R. Navarro, M. Pena, and J. Fierro, Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass, Chem. Rev., 107, 3952-3991 (2007). https://doi.org/10.1021/cr0501994
  4. X. Li, R. Singh, K. Dudeck, K. Berchtold, and B. Benicewicz, Influence of polybenzimidazole main chain structure on $H_2/CO_2$ separation at elevated temperatures, J. Membr. Sci., 461, 59-68 (2014). https://doi.org/10.1016/j.memsci.2014.03.008
  5. N. Brandon and Z. Kurban, Clean energy and the hydrogen economy, Philos. Trans. A. Math. Phys. Eng. Sci., 375, 1-17 (2017).
  6. M. Ball and M. Weeda, The hydrogen economy - Vision or reality?, Int. J. Hydrogen Energy, 40, 7903-7919 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.032
  7. A. H asanoglu, I. Demirci, and A. Secer, Hydrogen production by gasification of Kenaf under subcritical liquid-vapor phase conditions, Int. J. Hydrogen Energy, 4, 14127-14136 (2019).
  8. O. Ozcan and A. Akin, Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: An optimization study, Int. J. Hydrogen Energy, 44, 14117-14126 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.211
  9. G. Solowski, M. Shalaby, H. Abdallah, A. Shaban, and A. Cenian, Production of hydrogen from biomass and its separation using membrane technology, Renew. Sustain. Energy Rev., 82, 3152-3167 (2018). https://doi.org/10.1016/j.rser.2017.10.027
  10. Y. Li and T. Chung, Highly selective sulfonated polyethersulfone (SPES)-based membranes with transition metal counterions for hydrogen recovery and natural gas separation, J. Membr. Sci., 308, 128-135 (2008). https://doi.org/10.1016/j.memsci.2007.09.053
  11. S. Sircar and T. Golden, Separation science and technology purification of hydrogen by pressure swing, Sep. Sci. Technol., 35, 667-687 (2000). https://doi.org/10.1081/SS-100100183
  12. S. Sircar, Production of hydrogen and ammonia synthesis gas by pressure swing adsorption, Sep. Sci. Technol., 25, 1087-1099 (1990). https://doi.org/10.1080/01496399008051839
  13. S. Sircar and W. Kratz, Simultaneous production of hydrogen and carbon dioxide from steam reformer off-gas by pressure swing adsorption, Sep. Sci. Technol., 23, 2397-2415 (1988). https://doi.org/10.1080/01496398808058461
  14. B. Wang, R. Zhou, L. Yu, L. Qiu, X. Zhi, and X. Zhang, Evaluation of mass transfer correlations applying to cryogenic distillation process with non-equilibrium model, Cryogenics, 97, 22-30 (2019). https://doi.org/10.1016/j.cryogenics.2018.11.010
  15. A. Yousef, W. El-Maghlany, Y. Eldrainy, and A. Attia, New approach for biogas purification using cryogenic separation and distillation process for $CO_2$ capture, Energy, 156, 328-351 (2018). https://doi.org/10.1016/j.energy.2018.05.106
  16. R. Bhattacharyya, K. Bhanja, and S. Mohan, Simulation studies of the characteristics of a cryogenic distillation column for hydrogen isotope separation, Int. J. Hydrogen Energy, 41, 5003-5018 (2016). https://doi.org/10.1016/j.ijhydene.2016.01.106
  17. C. Tarun, E. Croiset, P. Douglas, M. Gupta, and M. Chowdhury, Techno-economic study of $CO_2$ capture from natural gas based hydrogen plants, Int. J. Greenh. Gas Control, 1, 55-61 (2007). https://doi.org/10.1016/S1750-5836(07)00036-9
  18. G. Ji and M. Zhao, Membrane separation technology in carbon capture, In: Y. Yun (ed), Recent Advances in Carbon Capture and Storage, 59-90, InTechOpen, London, UK (2017).
  19. G. Bernado, T. Araujo, T. Silva Lpoes, J. Sousa, and A. Mendes, Recent advances in membrane technologies for hydrogen purification, Int. J. Hydrogen Energy, 45, 7313-7338 (2020). https://doi.org/10.1016/j.ijhydene.2019.06.162
  20. E. Lasseuguette and M. Ferrari, Polymer membranes for sustainable gas separation, In: G. Szekely and A. Livingston (eds), Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing, 265-296, Elsevier, Amsterdam, the Netherlands (2019).
  21. P. S. Puri, Membrane Engineering for the Treatment of Gases: Volume 1: Gas-Separation Problems With Membranes, E. Drioli and G. Barbieri, 215-243, Royal Society of Chemistry (2011).
  22. Gas separation membrane market, by type, application and region-grow prospects and competitive analysis, 2016-2024, Credence Research (2017).
  23. X. Huang, H. Yao, Z. Cheng, and Y. Chen, Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production, Storage, and Utilization, S. Bashir and J. L. Liu, 85-112, Mater. Sci. (2017).
  24. J. O. Wan, H. C. Park, and Y. S. Gang, Polymeric gas separation membranes, Polymer Science and Technology, 10, 170-178 (1999).
  25. E. S. Ryi and J. S. Park, Research trend of Pd-based hydrogen membrane, J. Ind. Eng. Chem., 14, 46-53 (2011). https://doi.org/10.1021/ie50145a023
  26. S. K. Ryi, The Study of Pd-Cu-Ni Temary Alloyed Hydrogen Membranes Deposited on Porous Nickel Supports, PhD Dissertation, Korea University, Korea (2007).
  27. E. H. Back, Pre-combustion $CO_2$ chapter technology, News & Information for Chemical Engineers, 2, 151-155 (2009).
  28. K. A. Berchtold, R. P. Singh, K. W. Dudeck, G. J. Dahe, C. F. Welch, and D. Yang, High-temperature polymer-based membrane systems for pre-combustion $CO_2$ capture, Los Alamos National Laboratory, NETL CCT, 10, 1-37 (2012).
  29. K. Berchtold, R. Singh, J. Young, and K. Dudect, Polybenzimidazole composite membranes for high temperature synthesis gas separations, J. Membr. Sci., 415, 265-270 (2012). https://doi.org/10.1016/j.memsci.2012.05.005
  30. T. Merkel, M. Zhou, and R. Baker, Carbon dioxide capture with membranes at an IGCC power plant, J. Membr. Sci., 389, 441-450 (2012). https://doi.org/10.1016/j.memsci.2011.11.012
  31. S. H. Han, J. E. Lee, K. H. Lee, H. B. Park, and Y. M. Lee, Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement, J. Membr. Sci., 357, 143-151 (2010). https://doi.org/10.1016/j.memsci.2010.04.013
  32. X. Li, R. Singh, K. Dudeck, and K. Berchtold, Influence of polybenzimidazole main chain structure on $H_2/CO_2$ separation at elevated temperatures, J. Membr. Sci., 461, 59-68 (2014). https://doi.org/10.1016/j.memsci.2014.03.008
  33. H. Kita, Materials Scienece of Membranes for Gas and Vapor Separation, Y. Yampolskii, I. Pinnau and B. D. Freeman, 337-354, John Wiley & Sons (2006).
  34. J. Wijmans and R. Baker, The solution-diffusion model: A review, J. Membr. Sci., 107, 1-21 (1995). https://doi.org/10.1016/0376-7388(95)00102-I
  35. L. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62, 165-185 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  36. S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, and M. Guiver, Advances in high permeability polymer-based membrane materials for $CO_2$ separations, Energy. Environ. Sci., 9, 1863-1890 (2016). https://doi.org/10.1039/C6EE00811A
  37. T. Ward and T. Dao, Model of hydrogen permeation behavior in palladium membranes, J. Membr. Sci., 153, 211-213 (1999). https://doi.org/10.1016/S0376-7388(98)00256-7
  38. Z. Tao, L. Yan, J. Qjao, B. Wang, L. Zhang, and J. Zhang, A review of advanced proton-conducting materials for hydrogen separation, Prog. Mater. Sci., 74, 1-50 (2015). https://doi.org/10.1016/j.pmatsci.2015.04.002
  39. U. Balachandran, T. Lee, L. Chan, S. Song, J. Picciolo, and S. Dorris, Hydrogen separation by dense cermet membranes, Fuel, 85, 150-155 (2006). https://doi.org/10.1016/j.fuel.2005.05.027
  40. X. Chen, N. Tien-Binh, S. Kaliaguine, and D. Rodrigue, Polyimide membranes for gas separation: Synthesis, processing and properties, in C. Murphy (ed), Polyimides Synthesis, Applications and Research, 1-71, Nova Sciences Publishers, Hauppauge, New York, USA (2016).
  41. J. N. Barsema, G. C. Kapantaidakis, N. Vegt, G. Koops, and M. Wessling, Preparation and characterization of highly selective dense and hollow fiber asymmetric membranes based on BTDA-TDI/MDI co-polyimide, J. Membr. Sci., 216, 195-205 (2003). https://doi.org/10.1016/S0376-7388(03)00071-1
  42. Q. Song, S. Nataraj, M. Roussenova, J. Tan, D. Hughes, W. Li, P. Bourgoin, M. Alam, A. Cheetham, S. Al-Muhtaseb, and E. Sivaniab, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation, Energy Environ. Sci., 5, 8359-8369 (2012). https://doi.org/10.1039/c2ee21996d
  43. M. Djebbau, Q. Nguyen, R. Clement, and Y. Germain, Pervaporation of aqueous ester solutions through hydrophobic poly(ether-block-amide) copolymer membranes, J. Membr. Sci., 146, 125-133 (1998). https://doi.org/10.1016/S0376-7388(98)00090-8
  44. M. Rezac and T. John, Correlation of penetrant transport with polymer free volume: Additional evidence from block copolymers, Polymer, 39, 599-603 (1998). https://doi.org/10.1016/S0032-3861(97)00302-9
  45. S. Reijerkerk, Polyether based block copolymer membranes for $CO_2$ separation, Ipskamp Drukkers B. V., Enschede, The Netherlands (2010).
  46. J. H. Kim, S. Y. Ha, and Y. M. Lee, Gas permeation of poly(amide-6-b-ethylene oxide) copolymer, J. Membr. Sci., 190, 179-193 (2001). https://doi.org/10.1016/S0376-7388(01)00444-6
  47. H. Vogel and C. Marvel, Polybenzimidazoles, new thermally stable polymers, J. Polym. Sci., 50, 511-539 (1961). https://doi.org/10.1002/pol.1961.1205015419
  48. S. Qing, W. Huang, and D. Yan, Synthesis and characterization of thermally stable sulfonated polybenzimidazoles, Eur. Polym. J., 41, 1589-1595 (2005). https://doi.org/10.1016/j.eurpolymj.2005.02.001
  49. Y. Tsur, H. H. Levine, and M. Levy, Effects of structure on properties of some new aromatic-aliphatic polybenzimidazoles, J. Polym. Sci. Polym. Chem., 12, 1515-1529 (1974). https://doi.org/10.1002/pol.1974.170120714
  50. S. Sivaram, The history of polymers: The origins and the growth of a science, 1-55, National Laboratory, India (1937).
  51. H. Vogel and C. Marvel, Polybenzimidazoles, new thermally stable polymers, J. Polym. Sci., 50, 511-539 (1961). https://doi.org/10.1002/pol.1961.1205015419
  52. H. Vogel and C. Marvel Polybenzimidazoles. II, J. Polym. Sci. Part. A, 1, 1531-1541 (1963).
  53. L. Xiao, H. Zhang, E. Scanlon, L. Ramanathan, E.-W. Choe, D. Rogers, T. Apple, and B. Benicewicz, High-temperature polybenzimidazole fuel cell membranes via a sol-gel process, Chem. Mater., 17, 5328-5333 (2005). https://doi.org/10.1021/cm050831+
  54. E. K. Kim, S. Y. Lee, S. Y. Nam, S. J. Yoo, J. Y. Kim, J. H. Jang, D. Henkensmeier, H. J. Kim, and J. C. Lee, Synthesis of high molecular weight polybenzimidazole using a highly pure monomer under mild conditions, Polym. Int., 66, 1812-1818 (2017). https://doi.org/10.1002/pi.5426
  55. J. Higgins and C. Marvel, Benzimidazole polymers from aldehydes and tetraamines, J. Polym. Sci. A1, 8, 171-177 (1970). https://doi.org/10.1002/pol.1970.150080116
  56. K. Fishel, A. Gulledge, A. Pingitore, J. Hoffman, W. Steckle, and B. Benicewicz, Solution polymerization of polybenzimidazole, Polym. Sci. A1, 54, 1795-1802 (2016). https://doi.org/10.1002/pola.28041
  57. D. Gopalakrishnan, R. Anbazhagan, and K. Aravindhan, Comfort properties of Polybenzimidazole fiber, Text. Res. J., 48, 31-35 (2006).
  58. K. Wang, Q. Yang, T. Chung, and R. Rajagopalan, Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall, Chem. Eng. Sci., 64, 1577-1584 (2009). https://doi.org/10.1016/j.ces.2008.12.032
  59. E. Strauss, Strength of polybenzimidazole and phenolic laminate- to-metal joints, Polym. Eng. Sci., 6, 24-29 (1966). https://doi.org/10.1002/pen.760060105
  60. J. Lobato, P. Canizares, M. Rodrigo, J. Linares, and J. Aguilar, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, J. Membr. Sci., 306, 47-55 (2007). https://doi.org/10.1016/j.memsci.2007.08.028
  61. S. K. Kim, K. H. Kim, J. O. Park, K. Kim, T. Ko, S. W. Choi, C. Pak, H. Chang, and J. C. Lee, Highly durable polymer electrolyte membranes at elevated temperature: Cross-linked copolymer structure consisting of poly(benzoxazine) and poly(benzimidazole), J. Power Sources, 226, 346-353 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.019
  62. I. Valtcheva, S. Kumbharkar, J. Kim, and Y. Bhole, Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments, J. Membr. Sci., 457, 62-72 (2014). https://doi.org/10.1016/j.memsci.2013.12.069
  63. K. Berchtold, R. Singh, J. Young, and K. Dudeck, Polybenzimidazole composite membranes for high temperature synthesis gas separations, J. Membr. Sci., 415, 265-270 (2012). https://doi.org/10.1016/j.memsci.2012.05.005
  64. S. Kumbharkar, Y. Liu, and K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for $H_2/CO_2$ separation, J. Membr. Sci., 375, 231-240 (2011). https://doi.org/10.1016/j.memsci.2011.03.049
  65. D. Pesiri, B. Jorgensen, and R. Dye, Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, and carbon dioxide, J. Membr. Sci., 218, 11-18 (2003). https://doi.org/10.1016/S0376-7388(03)00129-7
  66. A. L. Gulledge, Advancements in the design, Synthesis, and Application of Polybenzimidazoles, PhD Dissertation, University of South Carolina, Clumbia (2014).
  67. J. Higgins and C. Marvel, Benzimidazole polymers from aldehydes and tetraamines, J. Polym. Sci A1, 8, 171-177 (1970). https://doi.org/10.1002/pol.1970.150080116
  68. E. K. Kim, S. Y. Lee, S. Y. Nam, S. J. Yoo, J. Y. Kim, J. H. Jang, D. Henkensmeier, H. J. Kim, and J. C. Lee, Synthesis of high molecular weight polybenzimidazole using a highly pure monomer under mild conditions, Polym. Int., 66, 1812-1818 (2017). https://doi.org/10.1002/pi.5426
  69. K. Fishel, A. Gulledge, A. Pingitore, J. Hoffman, W. Steckle, and B. Benicewicz, Solution polymerization of polybenzimidazole, J. Polym. Sci. A. Polym. Chem., 54, 1795-1802 (2016). https://doi.org/10.1002/pola.28041
  70. M. K. Jeong and S. Y. Nam, Reviews on preparation and membrane applications of polybenzimidazole polymers, Membr. J., 26, 253-265 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.253
  71. D. Mecerreyes, H. Grande, O. Miguel, and E. Ochoteco, Porous polybenzimidazole membranes doped with phosphoric acid: Highly proton-conducting solid electrolytes, Chem. Mater., 16, 604-607 (2004). https://doi.org/10.1021/cm034398k
  72. S. Kumbharkar, Y. Liu, and K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for $H_2/CO_2$ separation, J. Membr. Sci., 375, 231-240 (2011). https://doi.org/10.1016/j.memsci.2011.03.049
  73. K. Wang and T. Chung, Polybenzimidazole nanofiltration hollow fiber for cephalexin separation, AIChE J., 59, 215-228 (2012). https://doi.org/10.1002/aic.13781
  74. G. Dong, H. Li, and V. Chen, Factors affect defect-free $Matrimid^{(R)}$ hollow fiber gas separation performance in natural gas purification, J. Membr. Sci., 353, 17-27 (2010). https://doi.org/10.1016/j.memsci.2010.02.012
  75. M. Donohum, B. Minhas, and S. Y. Lee, Permeation behavior of carbon dioxide-methane mixtures in cellulose acetate membranes, J. Membr. Sci., 42, 197-214 (1989). https://doi.org/10.1016/S0376-7388(00)82376-5
  76. K. Wang, T. Chung, and J. Qin, Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process, J. Membr. Sci., 300, 6-12 (2007). https://doi.org/10.1016/j.memsci.2007.05.035
  77. Y. S. Lee, J. H. Shim, and J. Y. Suh, A finite outlet volume correction to the time lag method: The case of hydrogen permeation through V-alloy and Pd membranes, J. Membr. Sci., 585, 253-259 (2019). https://doi.org/10.1016/j.memsci.2019.05.048
  78. Y. Liu, R. Wang, and T. Chung, Chemical cross-linking modification of polyimide membranes for gas separation, J. Membr. Sci., 189, 231-239 (2001). https://doi.org/10.1016/S0376-7388(01)00415-X
  79. S. Kumbharkar, P. Karadkar, and U. Kharul, Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture, J. Membr. Sci., 286, 161-169 (2006). https://doi.org/10.1016/j.memsci.2006.09.030
  80. S. Kumbharkar and U. Kharul, Investigation of gas permeation properties of systematically modified polybenzimidazoles by N-substitution, J. Membr. Sci., 357, 134-142 (2010). https://doi.org/10.1016/j.memsci.2010.04.014
  81. K. Berchtold, R. Singh, J. Young, and K. Dudeck, Polybenzimidazole composite membranes for high temperature synthesis gas separations, J. Membr. Sci., 415, 265-270 (2012). https://doi.org/10.1016/j.memsci.2012.05.005
  82. X. Li, R. Singh, K. Dudeck, K. Berchtold, and B. Benicewicz, Influence of polybenzimidazole main chain structure on $H_2/CO_2$ separation at elevated temperatures, J. Membr. Sci., 461, 59-68 (2014). https://doi.org/10.1016/j.memsci.2014.03.008
  83. R. Singh, X. Li, K. Dudeck, and B. Benicewicz, Polybenzimidazole based random copolymers containing hexafluoroisopropylidene functional groups for gas separations at elevated temperatures, Polymer, 119, 134-141 (2017). https://doi.org/10.1016/j.polymer.2017.04.075
  84. L. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  85. K. H. Kim, S. W. Choi, J. O. Park, S. K. Kim, M. Y. Lim, K. H. Kim, T. Ko, and J. C. Lee, Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates for reinforced pore-filling membranes in fuel cells operating at high temperatures, J. Membr. Sci., 536, 76-85 (2017). https://doi.org/10.1016/j.memsci.2017.04.058
  86. I. Valtcheva, P. Marchetti, and A. Livingston, Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): Analysis of crosslinking reaction mechanism and effects of reaction parameters, J. Membr. Sci., 493, 568-579 (2015). https://doi.org/10.1016/j.memsci.2015.06.056
  87. J. Mchattie, W. Koros, and D. Paul, Gas transport properties of polysulphones: 2. Effect of bisphenol connector groups, Polymer, 32, 2618-2625 (1991). https://doi.org/10.1016/0032-3861(91)90343-H
  88. N. Jusoh, Y. Yeong, K. Lau, and A. Shzriff, Mixed matrix membranes comprising of ZIF-8 nanofillers for enhanced gas transport properties, Procedia. Eng., 148, 1259-1265 (2016). https://doi.org/10.1016/j.proeng.2016.06.499
  89. H. Lin, E. Wagner, B. Freemane, L. Toy, and R. Gupta, Plasticization-enhanced hydrogen purification using polymeric membranes, Science, 311, 639-642 (2006). https://doi.org/10.1126/science.1118079
  90. B. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999). https://doi.org/10.1021/ma9814548
  91. A. Naderi, A. Tashvigh, and T. Chung, $H_2/CO_2$ separation enhancement via chemical modification of polybenzimidazole nanostructure, J. Membr. Sci., 572, 343-349 (2019). https://doi.org/10.1016/j.memsci.2018.11.020
  92. P. Li, Z. Wang, Z. Qiao, Y. Liu, X. Cao, W. Li, J. Wang, and S. Wang, Recent developments in membranes for efficient hydrogen purification, J. Membr. Sci., 495, 130-168 (2015). https://doi.org/10.1016/j.memsci.2015.08.010
  93. D. D'Alessandro, B. Smit, and J. Long, Carbon dioxide capture: Prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082 (2010). https://doi.org/10.1002/anie.201000431
  94. B. Low, Y. Xizo, T. Chung, and Y. Liu, Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on $H_2/CO_2$ separation, Macromolecules, 41, 1297-1309 (2008). https://doi.org/10.1021/ma702360p
  95. H. Lin, Integrated membrane material and process development for gas separation, Curr. Opin. Chem. Eng., 4, 54-61 (2014). https://doi.org/10.1016/j.coche.2014.01.010
  96. A. Naderi, A. Tashvigh, T. Chung, M. Weber, and C. Maletzko, Molecular design of double crosslinked sulfonated polyphenylsulfone /polybenzimidazole blend membranes for an efficient hydrogen purification, J. Membr. Sci., 563, 726-733 (2018). https://doi.org/10.1016/j.memsci.2018.06.033
  97. A. Naderi, T. Chung, M. Weber, and C. Maletzko, High performance dual-layer hollow fiber membrane of sulfonated polyphenylsulfone/ polybenzimidazole for hydrogen purification, J. Membr. Sci., 591, 117292 (2019). https://doi.org/10.1016/j.memsci.2019.117292
  98. L. Zhu, M. Swihart, and H. Lin, Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane $H_2/CO_2$ separation, J. Mater. Chem. A, 5, 19914-19923 (2017). https://doi.org/10.1039/C7TA03874G
  99. Y. Wang, S. H. Goh, and T. Chung, Miscibility study of $Torlon^{(R)}$ polyamide-imide with $Matrimid^{(R)}$ 5218 polyimide and polybenzimidazole, Polymer, 48, 2901-2909 (2007). https://doi.org/10.1016/j.polymer.2007.03.040
  100. O. David, D. Gorri, A. Urtiaga, and I. Ortiz, Mixed gas separation study for the hydrogen recovery from $H_2/CO/N_2/CO_2$ post combustion mixtures using a Matrimid membrane, J. Membr. Sci., 378, 359-368 (2011). https://doi.org/10.1016/j.memsci.2011.05.029
  101. E. Foldes, E. Fekete, F. Karasz, and B. Pukanszky, Interaction, miscibility and phase inversion in PBI/PI blends, Polymer, 41, 975-983 (2000). https://doi.org/10.1016/S0032-3861(99)00236-0
  102. P. Musto, F. Karasz, and W. Macknight, Hydrogen bonding in polybenzimidazole/poly (ether imide) blends: A spectroscopic study, Macromolecules, 24, 4762-4769 (1991). https://doi.org/10.1021/ma00017a006
  103. S. Hosseini, M. Teoh, and T. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer, 49, 1594-1603 (2008). https://doi.org/10.1016/j.polymer.2008.01.052
  104. N. Panapitiya, S. Wijenayake, D. Nguyen, C. Karunaweera, Y. Huang, K. Balkus, I. Musselman, and J. Ferraris, Compatibilized immiscible polymer blends for gas separations, Materials, 9, 1-23 (2016). https://doi.org/10.3390/ma9010001
  105. A. Naderi, A. Tashvigh, T. Chung, M. Weber, and C. Maletzko, Molecular design of double crosslinked sulfonated polyphenylsulfone/polybenzimidazole blend membranes for an efficient hydrogen purification, J. Membr. Sci., 563, 726-733 (2018). https://doi.org/10.1016/j.memsci.2018.06.033
  106. H. Suhaimi, L. Peng, and A. Ahmad, Hydrogen purification using polybenzimidazole mixed matrix membrane with palladium nanoparticles stabilized by polyethylene glycol, Chem. Eng. Technol., 40, 631-638 (2017). https://doi.org/10.1002/ceat.201600457
  107. R. Singh, X. Li, K. Dudeck, B. Benicewicz, and K. Berchtold, Polybenzimidazole based random copolymers containing hexafluoroisopropylidene functional groups for gas separations at elevated temperatures, Polymer, 119, 134-141 (2017). https://doi.org/10.1016/j.polymer.2017.04.075
  108. J. Moon, A. Bridge, C. D'Ambra, B. Freeman, and D. Paul, Gas separation properties of polybenzimidazole/thermally-rearranged polymer blends, J. Membr. Sci., 582, 182-193 (2019). https://doi.org/10.1016/j.memsci.2019.03.067
  109. T. Su, I. Ball, J. Conklin, S. Huang, R. Larson, S. Nguyen, B. Lew, and R. Kener, Polyaniline/polyimide blends for pervaporation and gas separation studies, Synth. Met., 84, 801-802 (1997). https://doi.org/10.1016/S0379-6779(96)04153-7
  110. J. Lainez, B. Zornoza, M. Carta, R. Evans, N. Mckeown, C. Tellez, and J. Coronas, Hydrogen separation at high temperature with dense and asymmetric membranes based on PIM-EA(H2)-TB/PBI blends, Ind. Eng. Chem. Res., 57, 16909-16916 (2018). https://doi.org/10.1021/acs.iecr.8b04209
  111. T. Yang, G. Shi, and T. Chung, Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purifi cation at high temperatures, Adv. Energy. Mater., 2, 1358-1367 (2012). https://doi.org/10.1002/aenm.201200200
  112. T. Yang and T. Chung, Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation, J. Mater. Chem. A, 1, 6081-6090 (2013). https://doi.org/10.1039/c3ta10928c
  113. G. Shi, H. Chen, Y. Jean, and T. Chung, Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation, Polymer, 54, 774-783 (2013). https://doi.org/10.1016/j.polymer.2012.11.056
  114. J. Lainez, B. Zornoza, C. Tellez, and J. Coronas, On the chemical filler-polymer interaction of nano- and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for $H_2/CO_2$ separation, J. Mater. Chem. A, 4, 14334-14341 (2016). https://doi.org/10.1039/C6TA06438H
  115. S. Y. Kong, D. H. Kim, D. Henkensmeier, H. J. Kim, H. C. Ham, J. Han, S. P. Yoon, C. W. Yoon, and S. H. Choi, Ultrathin layered Pd/PBI-HFA composite membranes for hydrogen separation, Sep. Purif. Technol., 179, 486-493 (2017). https://doi.org/10.1016/j.seppur.2017.02.033
  116. E. Favre, Comprehensive Membrane Science and Engineering, E. Drioli, L. Giomo, E. Fontananova, 159-167, Elsevier (2017).
  117. M. Maarefian, S. Bandehali, S. Azami, H. Sanaeepur, and A. Moghadassi, Hydrogen recovery from ammonia purge gas by a membrane separator: A simulation study, Int, J. Energ. Res., 43, 8217-8229 (2019).
  118. H. Z. Chen and T. Chung, $CO_2$-selective membranes for hydrogen purification and the effect of carbon monoxide (CO) on its gas separation performance, Int. J. Hydrogen Energy, 37, 6001-6011 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.124
  119. S. Hosseini, M. Omidkhah, A. Moghaddam, V. Pirouzfar, W. Krantz, and N. Tan, Enhancing the properties and gas separation performance of PBI-polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process, Sep. Purif. Technol., 122, 278-289 (2014), https://doi.org/10.1016/j.seppur.2013.11.021
  120. B. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999). https://doi.org/10.1021/ma9814548
  121. H. B. Park, C. H. Jung, Y. M. Lee, A. Hill, S. Pas, S. Mudie, E. Wagner, B. Freeman, and D. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science, 318, 254-257 (2007). https://doi.org/10.1126/science.1146744
  122. M. Omidvar, H. Nguyen, L. Huang, C. Doherty, A. Hill, C. Stafford, X. Feng, M. Swihart, and H. Lin, Polybenzimidazole-derived carbon molecular sieve membranes with "Hourglass" nanostructures achieving $H_2/CO_2$ separation properties above upper bounds, J. Chem. Inf. Model., 53, 1-19 (2019). https://doi.org/10.1021/ci300547g
  123. M. Rungta, G. Wenz, C. Zhang, L. Xu, W. Qiu, and J. Adams, Carbon molecular sieve structure development and membrane performance relationships, Carbon, 115, 237-248 (2017). https://doi.org/10.1016/j.carbon.2017.01.015
  124. S. Hosseini and T. Chung, Carbon membranes from blends of PBI and polyimides for $N_2/CH_4$ and $CO_2/CH_4$ separation and hydrogen purification, J. Membr. Sci., 328, 174-185 (2009). https://doi.org/10.1016/j.memsci.2008.12.005
  125. J. Francisco, J. Garcia, M. Bastarrachea, D. Paul, B. Freeman, and M. Vega, CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance, J. Membr. Sci., 597, 117703 (2020). https://doi.org/10.1016/j.memsci.2019.117703
  126. V. Giel, Z. Moravkova, J. Peter, and M. Trchova, Thermally treated polyaniline/polybenzimidazole blend membranes: Structural changes and gas transport properties, J. Membr. Sci., 537, 315-322 (2017). https://doi.org/10.1016/j.memsci.2017.04.062
  127. W. Jiao, Y. Ban, Z. Shi, X. Jiang, Y. Li, and W. Yang, Gas separation performance of supported carbon molecular sieve membranes based on soluble polybenzimidazole, J. Membr. Sci., 533, 1-10 (2017). https://doi.org/10.1016/j.memsci.2017.03.022
  128. D. Weinkauf and D. Paul, Gas transport properties of thermotropic liquid-crystalline copolyesters. II. The effects of copolymer composition, J. Polym. Sci. B. Polym. Phys., 30, 837-349 (1992). https://doi.org/10.1002/polb.1992.090300805
  129. G. Illing, K. Hellgardt, M. Schonert, R. Wakeman, and A. Jungbauer, Towards ultrathin polyaniline films for gas separation, J. Membr. Sci., 253, 199-208 (2005). https://doi.org/10.1016/j.memsci.2004.12.031
  130. M. Rezac and B. Schoberl, Transport and thermal properties of poly(ether imide)/acetylene-terminated monomer blends, J. Membr. Sci., 156, 211-222 (1999). https://doi.org/10.1016/S0376-7388(98)00346-9
  131. A. Tashvigh, Y. Feng, M. Weber, C. Maletzko, and T. Chung, 110th anniversary: Selection of cross-linkers and cross-linking procedures for the fabrication of solvent-resistant nanofiltration membranes: A review, Ind. Eng. Chem. Res., 58, 10678-10691 (2019). https://doi.org/10.1021/acs.iecr.9b02408
  132. D. Xing, S. Chan, and T. Chung, The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration, Green Chem., 16, 1383-1392 (2014). https://doi.org/10.1039/C3GC41634H
  133. T. H. Kim, T. W. Lim, and J. C. Lee, High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting, J. Power Sources, 172, 172-179 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.040
  134. H. Sun, C. Xie, H. Chen, and S. Almheiri, A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane, Appl. Energy, 160, 937-944 (2015). https://doi.org/10.1016/j.apenergy.2015.02.053
  135. S. Angional, P. Righetti, E. Quartarone, E. Dilena, P. Mustarelli, and A. Magistris, Novel aryloxy-polybenzimidazoles as proton conducting membranes for high temperature PEMFCs, Int. J. Hydrogen. Energy, 36, 7174-7182 (2011). https://doi.org/10.1016/j.ijhydene.2011.03.016
  136. A. Carollo, E. Quartarone, C. Tomasi, P. Mustarelli, F. Belotti, A. Magistris, F. Maestroni, M. Parachini, L. Garlaschelli, and P. Righetti, Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications, J. Power Sources, 160, 175-180 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.081
  137. D. Henkensmeier, H. Cho, M. Brela, A. Michalak, A. Dyck, W. Germer, N. Duong, J. H. Jang, H. J. Kim, N. S. Woo, and T. H. Lim, Anion conducting polymers based on ether linked polybenzimidazole (PBI-OO), Int. J. Hydrogen Energy., 39, 2842-2853 (2014). https://doi.org/10.1016/j.ijhydene.2013.07.091
  138. S. Singha, T. Jana, J. Modestra, A. Kumar, and S. Mohan, Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells, J. Power Sources, 317, 143-152 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.103
  139. X. Glipa, M. Haddad, D. Jones, and J. Roziere, Synthesis and characterisation of sulfonated polybenzimidazole: A highly conducting proton exchange polymer, Solid State Ionics, 97, 323-331 (1997). https://doi.org/10.1016/S0167-2738(97)00032-5
  140. S. W. Chuang and S. L. Hsu, Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications, J. Polym. Sci. A. Polym. Chem., 44, 4508-4513 (2005).
  141. L. Xiao, H. Zhahg, T. Jana, E. Scanlon, R. Chen, E. Choe, L. Ramanathan, S. Yu, and B. Benicewicz, Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications, Fuel Cells, 5, 287-295 (2005). https://doi.org/10.1002/fuce.200400067
  142. M. Geormezi, V. Deimede, N. Gourdoupi, N. Triantafyllopoulos, S. Neophytides, and J. K. Kallitsis, Novel pyridine-based poly (ether sulfones) and their study in high temperature PEM fuel cells, Macromolecules, 41, 9051-9056 (2008). https://doi.org/10.1021/ma801678h
  143. Z. Yang and F. Luo, Pt nanoparticles deposited on dihydroxy-polybenzimidazole wrapped carbon nanotubes shows a remarkable durability in methanol electro-oxidation, Int. J. Hydrogen Energy, 42, 507-514 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.148
  144. X. Li, X. Chen, and B. Benicewicz, Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs), J. Power Sources, 243, 796-804 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.033
  145. S. G. Lee, C. Y. Han, Y. S. Seo, J. H. Lee, and B. S. Seo, Shell-and tube type reactor for reforming natural gas and method for producing syngas or hydrogen gas using the same, KR Patent 10-2016-0047386 (2016).
  146. D. J. Kang, H. W. Park, M. S. Jang, and J. H. Sang, Hydrogen industry: the dawn of the hydrogen economy, Research Color Series#9, Hyundai Motor Group, 13-22 (2020).