DOI QR코드

DOI QR Code

A Study on Fauna Habitat Valuation of Urban Ecological Maps

도시생태현황지도 작성을 위한 육상동물 서식지 가치평가 방안 연구

  • Received : 2020.07.14
  • Accepted : 2020.08.27
  • Published : 2020.10.31

Abstract

URBAN ECOLOGICAL MAPS must be created by local governments by NATURAL ENVIRONMENT CONSERVATION ACT, and the maps are generally called biotope map. So far, biotope maps study was a tendency to focus on the type of vegetation, naturalness, land use, landscape ecology theories. However, biotope related studies have not reflected the concept of animal habitat, which is a component of biotope, and that is the limitation of biotope map research. This study suggest a methodology to predict potential habitats for fauna using machine learning to quantify habitat values. The potential habitats of fauna were predicted by spatial statistics using machine learning, and the results were converted into species richness. For biotope type assessments, we classified biotope values into vegetation value and habitat value and evaluated them using a matrix for value summation. The vegetation value was divided into 5 stages based on vegetation nature and land use, and the habitat value was classified into five stages by predicting the species richness predicted by machine learning. This is meaningful because our research can positively reflect the results of field surveys of fauna that were negatively reflected in the evaluation of biotope types in the past. Therefore, in the future, if the biotope map manual is revised, our methodology should be applied.

도시생태현황지도는 자연환경보전법에 의해 시(市)단위 이상의 지방자치단체는 의무적으로 작성해야 하며 일반적으로 비오톱지도라고 한다. 그 동안 비오톱지도 관련 연구는 식생유형, 식생자연성, 토지이용, 경관생태학 배경으로 이루어 졌으며, 비오톱의 구성요소인 동물서식지 개념을 적용하지 못하는 한계성을 가지고 있었다. 이 연구는 이러한 한계성을 개선하기 위해 육상동물 잠재서식지 개념을 도입하여 비오톱 유형평가에 적용할 수 있는 방법론을 제안하기 위해 수행되었다. 육상동물의 잠재서식지는 머신러닝을 이용한 공간통계 방법을 이용하여 예측하였고 그 결과를 종합하여 종풍부도로 변환하였다. 비오톱 유형평가는 식생학적 가치, 동물서식지 가치로 구분하여 가치합산 하였다. 식생학적 가치는 식생의 자연성과 토지이용을 고려하여 5단계로 구분하였고, 동물 서식지 가치는 머신러닝으로 예측한 종풍부도를 5단계로 구분하여 비오톱 유형평가에 적용하였다. 이 연구는 그동안 비오톱 유형평가에 소극적으로 반영된 육상동물 현장조사 결과를 적극적으로 반영할 수 있는 방법론을 도출하였다는 것에 의미가 있으며 향후 도시생태현황 지도 작성 매뉴얼 개정 시 고려될 필요가 있다.

Keywords

References

  1. Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of applied ecology 43, 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
  2. d'Amen M, Dubuis A, Fernandes RF, Pottier J, Pellissier L, Guisan A. 2015. Using species richness and functional traits predictions to constrain assemblage predictions from stacked species distribution models. Journal of biogeography 42, 1255-1266. https://doi.org/10.1111/jbi.12485
  3. Andersen MC, Watts JM, Freilich JE, Yool SR, Wakefield GI, McCauley JF, Fahnestock PB. 2000. Regression-tree modeling of desert tortoise habitat in the central Mojave Desert. Ecological Applications 10, 890-900. https://doi.org/10.1890/1051-0761(2000)010[0890:RTMODT]2.0.CO;2
  4. Andren H, Angelstam P. 1988. Elevated predation rates as an edge effect in habitat islands: experimental evidence. Ecology 69, 544-547. https://doi.org/10.2307/1940455
  5. Araujo MB, New M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22, 42-47. https://doi.org/10.1016/j.tree.2006.09.010
  6. Attrill MJ, Rundle SD. 2002. Ecotone or ecocline: ecological boundaries in estuaries. Estuarine, Coastal and Shelf Science, 55(6), 929-936. https://doi.org/10.1006/ecss.2002.1036
  7. Bascompte J, Jordano P. 2007. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567-593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818
  8. Bleyhl B, Sipko T, Trepet S, Bragina E, Leitao PJ, Radeloff VC. Kuemmerle T. 2015. Mapping seasonal European bison habitat in the Caucasus Mountains to identify potential reintroduction sites. Biological Conservation 191, 83-92. https://doi.org/10.1016/j.biocon.2015.06.011
  9. Breininger DR, Provancha MJ, Smith RB. 1991. Mapping Florida scrub jay habitat for purposes of land-use management.
  10. Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW. 2010. Can mechanism inform species' distribution models?. Ecology letters 13, 1041-1054. https://doi.org/10.1111/j.1461-0248.2010.01479.x
  11. Chetkiewicz C-LB, St. Clair CC, Boyce MS. 2006. Corridors for Conservation: Integrating Pattern and Process. Annual Review of Ecology, Evolution, and Systematics 37, 317-342. https://doi.org/10.1146/annurev.ecolsys.37.091305.110050
  12. Choi IK, Ahn GY, Lee EH. 2007. A Comparative Study of Biotope Mapping between Korea and Germany. Korean Journal of Environment and Ecology 21, 565-575. [Korean Literature]
  13. Choi N, Kil J, Shin Y. 2017. Exploring the Application of Impact Mitigation Regulations through Biotope Maps. Ecology and Resilient Infrastructure 4, 237-244. [Korean Literature] https://doi.org/10.17820/ERI.2017.4.4.237
  14. Choi IK, Lee EH. 2007. A Study on the Classification of Biotope Type in Germany. Journal of the Korean Institute of Landscape Architecture 35, 73-81. [Korean Literature]
  15. Choi IK, Oh CH, Ahn GY, Lee E-H. 2009. The suggestion for evaluation items and system for assessment of biotope. Korean Journal of Environment and Ecology 23, 594-602. [Korean Literature]
  16. Choi IK, Oh CH, Lee EH. 2008. The suggestion for classification of biotope type for nationwide application. Korean Journal of Environment and Ecology 22, 666-678. [Korean Literature]
  17. Coops NC, Catling PC. 1997. Predicting the complexity of habitat in forests from airborne videography for wildlife management. International Journal of Remote Sensing 18, 2677-2682. https://doi.org/10.1080/014311697217530
  18. Distler T, Schuetz JG, Velasquez-Tibata J, Langham GM. 2015. Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change. Journal of Biogeography 42, 976-988. https://doi.org/10.1111/jbi.12479
  19. Druon JN. 2010. Habitat mapping of the Atlantic bluefin tuna derived from satellite data: Its potential as a tool for the sustainable management of pelagic fisheries. Marine Policy 34, 293-297. https://doi.org/10.1016/j.marpol.2009.07.005
  20. Fortuna MA, Bascompte J. 2006. Habitat loss and the structure of plant-animal mutualistic networks. Ecology letters 9, 281-286. https://doi.org/10.1111/j.1461-0248.2005.00868.x
  21. Franklin J, Steadman DW. 1991. The potential for conservation of Polynesian birds through habitat mapping and species translocation. Conservation Biology 5, 506-521. https://doi.org/10.1111/j.1523-1739.1991.tb00358.x
  22. Graham CH, Moritz C, Williams SE. 2006. Habitat history improves prediction of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences 103, 632-636. https://doi.org/10.1073/pnas.0505754103
  23. Hao T, Elith J, Guillera-Arroita G, Lahoz-Monfort JJ. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions 25, 839-852. https://doi.org/10.1111/ddi.12892
  24. Haslett JR. 1990. Geographic information systems. A new approach to habitat definition and the study of distributions. Trends in Ecology & Evolution 5, 214-218. https://doi.org/10.1016/0169-5347(90)90134-Y
  25. Jarvis PJ, Young CH. 2005. The mapping of urban habitat and its evaluation. Wolverhampton, University of Wolverhampton 19.
  26. Jordano P, Bascompte J, Olesen JM. 2003. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology letters 6, 69-81. https://doi.org/10.1046/j.1461-0248.2003.00403.x
  27. Jung SH, Kim DU, Lim BS, Kim AR, Seol J, Lee CS. 2019. Classification, Analysis on Attributes and Sustainable Management Plan of Biotop Established in Pohang City. Korean Journal of Ecology and Environment 52, 245-265. [Korean Literature] https://doi.org/10.11614/KSL.2019.52.3.245
  28. Ki KS. 2011. Application of Green Recreation Opportunity Based on Biotope Evaluation of Rural Region in the Seoul Metropolitan Area, Korea: A Case of Yangpeong-Gun, Gyeonggi-Do. Dissertation for Ph.D. Thesis. University of Seoul. [Korean Literature]
  29. Kim HS. 2012. Classification Biotope Type and Evaluation Value of Individual Biotope: Landscape Ecological Approaches. Dissertation for Ph.D. Thesis. Dongguk University. [Korean Literature]
  30. Kim HS, Jang NR. 2019. Gyeonggi-do's Biotope Map Issues and Alternatives. Issue & Diagnosis, 1-26.[Korean Literature]
  31. Kim JS, Jung TJ, Hong SH. 2015. Biotope type classification based on the vegetation community in built-up area. Korean Journal of Environment and Ecology 29, 454-461.[Korean Literature] https://doi.org/10.13047/KJEE.2015.29.3.454
  32. Liu C, White M, Newell G. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of biogeography 40, 778-789. https://doi.org/10.1111/jbi.12058
  33. Magura T. 2002. Carabids and forest edge: spatial pattern and edge effect. Forest Ecology and management 157, 23-37. https://doi.org/10.1016/S0378-1127(00)00654-X
  34. McComb WC, McGrath MT, Spies TA, Vesely D. 2002. Models for mapping potential habitat at landscape scales: an example using northern spotted owls. Forest Science 48, 203-216.
  35. Miyamoto A, Tamura N, Sugimura K, Yamada F. 2004. Predicting habitat distribution of the alien Formosan squirrel using logistic regression model. Global environmental research-english edition- 8, 13-22.
  36. Mykra H, Aroviita J, Kotanen J, Hamalainen H, Muotka T. 2008. Predicting the stream macroinvertebrate fauna across regional scales: influence of geographical extent on model performance. Journal of the North American Benthological Society 27, 705-716. https://doi.org/10.1899/07-074.1
  37. Naimi B, Araujo MB. 2016. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368-375. https://doi.org/10.1111/ecog.01881
  38. National law information center. 2019. Guidelines on urban ecological maps. URL http://www.law.go.kr/LSW/admRulLsInfoP.do?admRulSeq=2100000176310. [Korean Literature]
  39. Oh JH, Cho JH, Cho HJ, Choi MS, Kwon J. 2008. A Study on the Biotope Evaluation and Classification of Urban Forests for Landscape Ecological Management. Journal of the Korean Association of Geographic Information Studies 11, 101-111. [Korean Literature]
  40. Pereira J, Itami R. 1991. GIS-based habitat modeling using logistic multiple regression- A study of the Mt. Graham red squirrel. Photogrammetric engineering and remote sensing 57, 1475-1486.
  41. Pineda E, Lobo JM. 2009. Assessing the accuracy of species distribution models to predict amphibian species richness patterns. Journal of Animal Ecology 78, 182-190. https://doi.org/10.1111/j.1365-2656.2008.01471.x
  42. QGIS org. 2020. QGIS geographic information system. Open Source Geospatial Foundation Project. from http://qgis.org/.
  43. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  44. Raes N, Roos MC, Slik JF, Van Loon EE and Steege H ter. 2009. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32, 180-192. https://doi.org/10.1111/j.1600-0587.2009.05800.x
  45. Randin CF, Dirnbock T, Dullinger S, Zimmermann NE, Zappa M, Guisan A. 2006. Are nichebased species distribution models transferable in space? Journal of biogeography 33, 1689-1703. https://doi.org/10.1111/j.1365-2699.2006.01466.x
  46. Sukopp H, Weiler S. 1988. Biotope mapping and nature conservation strategies in urban areas of the Federal Republic of Germany. Landscape and urban planning 15, 39-58. https://doi.org/10.1016/0169-2046(88)90015-1
  47. Vazquez DP, Bluthgen N, Cagnolo L, Chacoff NP. 2009. Uniting pattern and process in plant-animal mutualistic networks: a review. Annals of botany 103, 1445-1457. https://doi.org/10.1093/aob/mcp057
  48. Wintle BA, Elith J, Potts JM. 2005. Fauna habitat modelling and mapping: a review and case study in the Lower Hunter Central Coast region of NSW. Austral Ecology 30, 719-738. https://doi.org/10.1111/j.1442-9993.2005.01514.x
  49. Wright JF. 1995. Development and use of a system for predicting the macroinvertebrate fauna in flowing waters. Australian Journal of Ecology 20, 181-197. https://doi.org/10.1111/j.1442-9993.1995.tb00531.x
  50. Yahner RH. 1988. Changes in wildlife communities near edges. Conservation biology 2, 333-339. https://doi.org/10.1111/j.1523-1739.1988.tb00197.x
  51. Zhang C, Ma Y (Eds.). 2012. Ensemble machine learning: methods and applications. Springer Science & Business Media.
  52. Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning JC. 2010. New trends in species distribution modelling. Ecography 33, 985-989. https://doi.org/10.1111/j.1600-0587.2010.06953.x