DOI QR코드

DOI QR Code

A Database of Caenorhabditis elegans Locomotion and Body Posture Phenotypes for the Peripheral Neuropathy Model

  • Chung, Ki Wha (Department of Biological Sciences, Kongju National University) ;
  • Kim, Ju Seong (Department of Biological Sciences, Kongju National University) ;
  • Lee, Kyung Suk (Department of Physics Education, Kongju National University)
  • Received : 2020.08.31
  • Accepted : 2020.10.07
  • Published : 2020.10.31

Abstract

Inherited peripheral neuropathy is a heterogeneous group of peripheral neurodegenerative disorders including Charcot-Marie-Tooth disease. Many peripheral neuropathies often accompany impaired axonal construction and function. To study the molecular and cellular basis of axon-defective peripheral neuropathy, we explore the possibility of using Caenorhabditis elegans, a powerful nematode model equipped with a variety of genetics and imaging tools. In search of potential candidates of C. elegans peripheral neuropathy models, we monitored the movement and the body posture patterns of 26 C. elegans strains with disruption of genes associated with various peripheral neuropathies and compiled a database of their phenotypes. Our assay showed that movement features of the worms with mutations in HSPB1, MFN2, DYNC1H1, and KIF1B human homologues are significantly different from the control strain, suggesting they are viable candidates for C. elegans peripheral neuropathy models.

Keywords

References

  1. Acunzo, J., Katsogiannou, M., and Rocchi, P. (2012). Small heat shock proteins HSP27 (HspB1), ${\alpha}B$-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int. J. Biochem. Cell Biol. 44, 1622-1631. https://doi.org/10.1016/j.biocel.2012.04.002
  2. Antonellis, A., Ellsworth, R.E., Sambuughin, N., Puls, I., Abel, A., Lee-Lin, S.Q., Jordanova, A., Kremensky, I., Christodoulou, K., Middleton, L.T., et al. (2003). Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72, 1293-1299. https://doi.org/10.1086/375039
  3. Baek, J.H., Cosman, P., Feng, Z., Silver, J., and Schafer, W.R. (2002). Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively. J. Neurosci. Methods 118, 9-21. https://doi.org/10.1016/S0165-0270(02)00117-6
  4. Ben Arous, J., Laffont, S., and Chatenay, D. (2009). Molecular and sensory basis of a food related two-state behavior in C. elegans. PLoS One 4, e7584. https://doi.org/10.1371/journal.pone.0007584
  5. Bragato, C., Gaudenzi, G., Blasevich, F., Pavesi, G., Maggi, L., Giunta, M., Cotelli, F., and Mora, M. (2016). Zebrafish as a model to investigate dynamin 2-related diseases. Sci. Rep. 6, 20466. https://doi.org/10.1038/srep20466
  6. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94. https://doi.org/10.1093/genetics/77.1.71
  7. Byrne, J.J., Soh, M.S., Chandhok, G., Vijayaraghavan, T., Teoh, J.S., Crawford, S., Cobham, A.E., Yapa, N.M.B., Mirth, C.K., and Neumann, B. (2019). Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. Cell. Mol. Life Sci. 76, 1967-1985. https://doi.org/10.1007/s00018-019-03024-5
  8. d'Ydewalle, C., Krishnan, J., Chiheb, D.M., Van Damme, P., Irobi, J., Kozikowski, A.P., Vanden Berghe, P., Timmerman, V., Robberecht, W., and Van Den Bosch, L. (2011). HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat. Med. 17, 968-974. https://doi.org/10.1038/nm.2396
  9. Edwards, S.L., Yorks, R.M., Morrison, L.M., Hoover, C.M., and Miller, K.G. (2015). Synapse-assembly proteins maintain synaptic vesicle cluster stability and regulate synaptic vesicle transport in Caenorhabditis elegans. Genetics 201, 91-116. https://doi.org/10.1534/genetics.115.177337
  10. England, J.D. and Asbury, A.K. (2004). Peripheral neuropathy. Lancet 363, 2151-2161. https://doi.org/10.1016/S0140-6736(04)16508-2
  11. Eschenbacher, W.H., Song, M., Chen, Y., Bhandari, P., Zhao, P., Jowdy, C.C., Engelhard, J.T., and Dorn, G.W., 2nd (2012). Two rare human mitofusin 2 mutations alter mitochondrial dynamics and induce retinal and cardiac pathology in Drosophila. PLoS One 7, e44296. https://doi.org/10.1371/journal.pone.0044296
  12. Evgrafov, O.V., Mersiyanova, I., Irobi, J., Van Den Bosch, L., Dierick, I., Leung, C.L., Schagina, O., Verpoorten, N., Van Impe, K., Fedotov, V., et al. (2004). Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36, 602-606. https://doi.org/10.1038/ng1354
  13. Hafezparast, M., Klocke, R., Ruhrberg, C., Marquardt, A., Ahmad-Annuar, A., Bowen, S., Lalli, G., Witherden, A.S., Hummerich, H., Nicholson, S., et al. (2003). Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808. https://doi.org/10.1126/science.1083129
  14. Harris, T.W., Arnaboldi, V., Cain, S., Chan, J., Chen, W.J., Cho, J., Davis, P., Gao, S., Grove, C.A., Kishore, R., et al. (2020). WormBase: a modern model organism information resource. Nucleic Acids Res. 48, D762-D767.
  15. Hong, Y.B., Kang, J., Kim, J.H., Lee, J., Kwak, G., Hyun, Y.S., Nam, S.H., Hong, H.D., Choi, Y.R., Jung, S.C., et al. (2016). DGAT2 mutation in a family with autosomal-dominant early-onset axonal Charcot-Marie-Tooth disease. Hum. Mutat. 37, 473-480. https://doi.org/10.1002/humu.22959
  16. Inman, H.F. and Bradley, E.L., Jr. (1989). The overlapping coefficient as a measure of agreement between probability distributions and point estimation of the overlap of two normal densities. Commun. Stat. Theory Methods 18, 3851-3874. https://doi.org/10.1080/03610928908830127
  17. Jordanova, A., Irobi, J., Thomas, F.P., Van Dijck, P., Meerschaert, K., Dewil, M., Dierick, I., Jacobs, A., De Vriendt, E., Guergueltcheva, V., et al. (2006). Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nat. Genet. 38, 197-202. https://doi.org/10.1038/ng1727
  18. Kim, J.Y., Woo, S.Y., Hong, Y.B., Choi, H., Kim, J., Choi, H., Mook-Jung, I., Ha, N., Kyung, J., Koo, S.K., et al. (2016). HDAC6 Inhibitors rescued the defective axonal mitochondrial movement in motor neurons derived from the induced pluripotent stem cells of peripheral neuropathy patients with HSPB1 mutation. Stem Cells Int. 2016, 9475981.
  19. Lee, A.J., Nam, D.E., Choi, Y.J., Nam, S.H., Choi, B.O., and Chung, K.W. (2020). Alanyl-tRNA synthetase 1 (AARS1) gene mutation in a family with intermediate Charcot-Marie-Tooth neuropathy. Genes Genomics 42, 663-672. https://doi.org/10.1007/s13258-020-00933-9
  20. Lee, H.J., Park, J., Nakhro, K., Park, J.M., Hur, Y.M., Choi, B.O., and Chung, K.W. (2012). Two novel mutations of GARS in Korean families with distal hereditary motor neuropathy type V. J. Peripher. Nerv. Syst. 17, 418-421. https://doi.org/10.1111/j.1529-8027.2012.00442.x
  21. Long, R.T., Peng, J.B., Huang, L.L., Jiang, G.P., Liao, Y.J., Sun, H., Hu, Y.D., and Liao, X.H. (2019). Augmenter of liver regeneration alleviates renal hypoxiareoxygenation injury by regulating mitochondrial dynamics in renal tubular epithelial cells. Mol. Cells 42, 893-905. https://doi.org/10.14348/molcells.2019.0060
  22. Mattingly, B.C. and Buechner, M. (2011). The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules. Dev. Biol. 359, 59-72. https://doi.org/10.1016/j.ydbio.2011.08.011
  23. Nam, S.H., Hong, Y.B., Hyun, Y.S., Nam, D.E., Kwak, G., Hwang, S.H., Choi, B.O., and Chung, K.W. (2016). Identification of genetic causes of inherited peripheral neuropathies by targeted gene panel sequencing. Mol. Cells 39, 382-388. https://doi.org/10.14348/molcells.2016.2288
  24. Pareyson, D., Saveri, P., and Pisciotta, C. (2017). New developments in Charcot-Marie-Tooth neuropathy and related diseases. Curr. Opin. Neurol. 30, 471-480. https://doi.org/10.1097/WCO.0000000000000474
  25. Pastore, M. and Calcagnì, A. (2019). Measuring distribution similarities between samples: a distribution-free overlapping index. Front. Psychol. 10, 1089. https://doi.org/10.3389/fpsyg.2019.01089
  26. Pierce, S.B., Chisholm, K.M., Lynch, E.D., Lee, M.K., Walsh, T., Opitz, J.M., Li, W., Klevit, R.E., and King, M.C. (2011). Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc. Natl. Acad. Sci. U. S. A. 108, 6543-6548. https://doi.org/10.1073/pnas.1103471108
  27. Santel, A. and Fuller, M.T. (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867-874. https://doi.org/10.1242/jcs.114.5.867
  28. Schwartz, N.U. (2019). Charcot-Marie-Tooth 2F (Hsp27 mutations): a review. Neurobiol. Dis. 130, 104505. https://doi.org/10.1016/j.nbd.2019.104505
  29. Shen, X.N., Sznitman, J., Krajacic, P., Lamitina, T., and Arratia, P.E. (2012). Undulatory locomotion of Caenorhabditis elegans on wet surfaces. Biophys. J. 102, 2772-2781. https://doi.org/10.1016/j.bpj.2012.05.012
  30. Sonnichsen, B., Koski, L.B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A.M., Artelt, J., Bettencourt, P., Cassin, E., et al. (2005). Fullgenome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434, 462-469. https://doi.org/10.1038/nature03353
  31. Storey, J.D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Series B Stat. Methodol. 64, 479-498. https://doi.org/10.1111/1467-9868.00346
  32. Tanaka, Y. and Hirokawa, N. (2002). Mouse models of Charcot-Marie- Tooth disease. Trends Genet. 18, S39-S44. https://doi.org/10.1016/S0168-9525(02)02839-1
  33. Vester, A., Velez-Ruiz, G., McLaughlin, H.M., NISC Comparative Sequencing Program, Lupski, J.R., Talbot, K., Vance, J.M., Züchner, S., Roda, R.H., Fischbeck, K.H., et al. (2013). A loss-of-function variant in the human histidyl-tRNA synthetase (HARS) gene is neurotoxic in vivo. Hum. Mutat. 34, 191-199. https://doi.org/10.1002/humu.22210
  34. Weedon, M.N., Hastings, R., Caswell, R., Xie, W., Paszkiewicz, K., Antoniadi, T., Williams, M., King, C., Greenhalgh, L., Newbury-Ecob, R., et al. (2011). Exome sequencing identifies a DYNC1H1 mutation in a large pedigree with dominant axonal Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 89, 308-312. https://doi.org/10.1016/j.ajhg.2011.07.002
  35. Wen, Q., Gao, S., and Zhen, M. (2018). Caenorhabditis elegans excitatory ventral cord motor neurons derive rhythm for body undulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170370. https://doi.org/10.1098/rstb.2017.0370
  36. Won, S.Y., Choi, B.O., Chung, K.W., and Lee, J.E. (2019). Zebrafish is a central model to dissect the peripheral neuropathy. Genes Genomics 41, 993-1000. https://doi.org/10.1007/s13258-019-00838-2
  37. Wright, M.W., Eyre, T.A., Lush, M.J., Povey, S., and Bruford, E.A. (2005). HCOP: the HGNC comparison of orthology predictions search tool. Mamm. Genome 16, 827-828. https://doi.org/10.1007/s00335-005-0103-2
  38. Yamaguchi, M. and Takashima, H. (2018). Drosophila Charcot-Marie-Tooth disease models. Adv. Exp. Med. Biol. 1076, 97-117. https://doi.org/10.1007/978-981-13-0529-0_7
  39. Yemini, E., Jucikas, T., Grundy, L.J., Brown, A.E., and Schafer, W.R. (2013). A database of Caenorhabditis elegans behavioral phenotypes. Nat. Methods 10, 877-879. https://doi.org/10.1038/nmeth.2560
  40. Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., Yang, H.W., Terada, S., Nakata, T., Takei, Y., et al. (2001). Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105, 587-597. https://doi.org/10.1016/S0092-8674(01)00363-4
  41. Zhen, M. and Samuel, A.D. (2015). C. elegans locomotion: small circuits, complex functions. Curr. Opin. Neurobiol. 33, 117-126. https://doi.org/10.1016/j.conb.2015.03.009
  42. Zuchner, S., Mersiyanova, I.V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., Dadali, E.L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., et al. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36, 449-451. https://doi.org/10.1038/ng1341

Cited by

  1. Morphological Characterization of small, dumpy, and long Phenotypes in Caenorhabditis elegans vol.44, pp.3, 2021, https://doi.org/10.14348/molcells.2021.2236