DOI QR코드

DOI QR Code

Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness

  • Tekin, Yadel Hazir (Department of Prosthodontic Dentistry, Faculty of Dentistry, Tokat Gaziosmanpasa University) ;
  • Hayran, Yeliz (Department of Prosthodontic Dentistry, Faculty of Dentistry, Tokat Gaziosmanpasa University)
  • Received : 2020.02.13
  • Accepted : 2020.08.13
  • Published : 2020.10.31

Abstract

PURPOSE. The present study aimed to evaluate the clinical applicability of monolithic zirconia (MZ) crowns of different thickness via determination of fracture resistance and marginal fit. MATERIALS AND METHODS. MZ crowns with 0.5, 0.8, 1.0, and 1.5 mm thickness and porcelain fused to metal (PFM) crowns were prepared, ten crowns in each group. Marginal gaps of the crowns were measured. All crowns were aged with thermal cycling (5 - 55℃/10000 cycle) and chewing simulator (50 N/1 Hz/lateral movement: 2 mm, mouth opening: 2 mm/240000 cycles). After aging, fracture resistance of crowns was determined. Statistical analysis was performed with one-way ANOVA and Tukey's HDS post hoc test. RESULTS. Fracture loads were higher in the PFM and 1 mm MZ crowns compared to 0.5 mm and 0.8 mm crowns. 1.5 mm MZ crowns were not broken even with the highest force applied (10 kN). All marginal gap values were below 86 ㎛ even in the PFM crowns, and PFM crowns had a higher marginal gap than the MZ crowns. CONCLUSION. The monolithic zirconia exhibited high fracture resistance and good marginal fit even with the 0.5 mm thickness, which might be used with reduced occlusal thickness and be beneficial in challengingly narrow interocclusal space.

Keywords

References

  1. Komine F, Blatz MB, Matsumura H. Current status of zirconia-based fixed restorations. J Oral Sci 2010;52:531-9. https://doi.org/10.2334/josnusd.52.531
  2. Vidotti HA, Pereira JR, Insaurralde E, Placa LF, Delben JR, do Valle AL. Influence of thermal and mechanical fatigue on the shear bond strength of different all-ceramic systems. J Clin Exp Dent 2017;9:e952-7.
  3. Stawarczyk B, Keul C, Eichberger M, Figge D, Edelhoff D, Lumkemann N. Three generations of zirconia: From veneered to monolithic. Part II. Quintessence Int 2017;48:441-50.
  4. Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent Mater 2015;31:603-23. https://doi.org/10.1016/j.dental.2015.02.011
  5. Church TD, Jessup JP, Guillory VL, Vandewalle KS. Translucency and strength of high-translucency monolithic zirconium oxide materials. Gen Dent 2017;65:48-52.
  6. Sun T, Zhou S, Lai R, Liu R, Ma S, Zhou Z, Longquan S. Load-bearing capacity and the recommended thickness of dental monolithic zirconia single crowns. J Mech Behav Biomed Mater 2014;35:93-101. https://doi.org/10.1016/j.jmbbm.2014.03.014
  7. Ahmed WM, Abdallah MN, McCullagh AP, Wyatt CCL, Troczynski T, Carvalho RM. Marginal discrepancies of monolithic zirconia crowns: The influence of preparation designs and sintering techniques. J Prosthodont 2019;28:288-98. https://doi.org/10.1111/jopr.13021
  8. Schriwer C, Skjold A, Gjerdet NR, Oilo M. Monolithic zirconia dental crowns. Internal fit, margin quality, fracture mode and load at fracture. Dent Mater 2017;33:1012-20. https://doi.org/10.1016/j.dental.2017.06.009
  9. Turkoglu P, Sen D. Evaluation of dual-cure resin cement polymerization under different types and thicknesses of monolithic zirconia. Biomed Res Int 2019;2019:4567854. https://doi.org/10.1155/2019/4567854
  10. Shillingburg HT, Hobo S, Whitsett LD, Jacobi R, Brackett S. Fundamentals of fixed prosthodontics. 3rd ed. Chicago; Quintessence; 1997. p. 281-307.
  11. Mitov G, Anastassova-Yoshida Y, Nothdurft FP, von See C, Pospiech P. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns. J Adv Prosthodont 2016;8:30-6. https://doi.org/10.4047/jap.2016.8.1.30
  12. $BruxZir^{(R)}$. Zirconia. Technical information. 2020 [Accessed June 20, 2020]. Available at: https://bruxzir.com/technicalinformation.
  13. Cho LR, Song HY, Koak JY, Heo SJ. Marginal accuracy and fracture strength of ceromer/fiber-reinforced composite crowns: Effect of variations in preparation design. J Prosthet Dent 2002;88:388-95. https://doi.org/10.1067/mpr.2002.128378
  14. Flinn BD, Raigrodski AJ, Mancl LA, Toivola R, Kuykendall T. Influence of aging on flexural strength of translucent zirconia for monolithic restorations. J Prosthet Dent 2017;117:303-9. https://doi.org/10.1016/j.prosdent.2016.06.010
  15. Kaleli N, Ural C, Kucukekenci AS. The effect of layer thickness on the porcelain bond strength of laser-sintered metal frameworks. J Prosthet Dent 2019;122:76-81. https://doi.org/10.1016/j.prosdent.2018.12.016
  16. Kokubo Y, Tsumita M, Kano T, Sakurai S, Fukushima S. Clinical marginal and internal gaps of zirconia all-ceramic crowns. J Prosthodont Res 2011;55:40-3. https://doi.org/10.1016/j.jpor.2010.09.001
  17. Sarikaya I, Hayran Y. Effects of dynamic aging on the wear and fracture strength of monolithic zirconia restorations. BMC Oral Health 2018;18:146. https://doi.org/10.1186/s12903-018-0618-z
  18. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater 2012;28:449-56. https://doi.org/10.1016/j.dental.2011.11.024
  19. Ferrario VF, Sforza C, Zanotti G, Tartaglia GM. Maximal bite forces in healthy young adults as predicted by surface electromyography. J Dent 2004;32:451-7. https://doi.org/10.1016/j.jdent.2004.02.009
  20. Shahmiri R, Standard OC, Hart JN, Sorrell CC. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J Prosthet Dent 2018;119:36-46. https://doi.org/10.1016/j.prosdent.2017.07.009
  21. Tang YL, Kim JH, Shim JS, Kim S. The effect of different cooling rates and coping thicknesses on the failure load of zirconia-ceramic crowns after fatigue loading. J Adv Prosthodont 2017;9:152-8. https://doi.org/10.4047/jap.2017.9.3.152
  22. Biesuz M, Pinter L, Saunders T, Reece M, Binner J, Sglavo VM, Grasso S. Investigation of electrochemical, optical and thermal effects during flash sintering of 8YSZ. Materials (Basel) 2018;11:1214. https://doi.org/10.3390/ma11071214
  23. Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent 2002;87:351-63. https://doi.org/10.1067/mpr.2002.123817
  24. Dhima M, Carr AB, Salinas TJ, Lohse C, Berglund L, Nan KA. Evaluation of fracture resistance in aqueous environment under dynamic loading of lithium disilicate restorative systems for posterior applications. Part 2. J Prosthodont 2014;23:353-7. https://doi.org/10.1111/jopr.12124
  25. Preis V, Behr M, Kolbeck C, Hahnel S, Handel G, Rosentritt M. Wear performance of substructure ceramics and veneering porcelains. Dent Mater 2011;27:796-804. https://doi.org/10.1016/j.dental.2011.04.001
  26. Gierthmuehlen P, Rubel A, Stampf S, Spitznagel F. Effect of reduced material thickness on fatigue behavior and failure load of monolithic CAD/CAM PICN molar crowns. Int J Prosthodont 2019;32:71-4. https://doi.org/10.11607/ijp.5946
  27. Dikicier S, Ayyildiz S, Ozen J, Sipahi C. Influence of core thickness and artificial aging on the biaxial flexural strength of different all-ceramic materials: An in-vitro study. Dent Mater J 2017;36:296-302. https://doi.org/10.4012/dmj.2016-157
  28. Yin R, Lee MH, Bae TS, Song KY. Effect of finishing condition on fracture strength of monolithic zirconia crowns. Dent Mater J 2019;38:203-10. https://doi.org/10.4012/dmj.2017-391
  29. Kim JH, Park JH, Park YB, Moon HS. Fracture load of zirconia crowns according to the thickness and marginal design of coping. J Prosthet Dent 2012;108:96-101. https://doi.org/10.1016/S0022-3913(12)60114-0
  30. Nakamura K, Ankyu S, Nilsson F, Kanno T, Niwano Y, von Steyern PV, Ortengren U. Critical considerations on load-tofailure test for monolithic zirconia molar crowns. J Mech Behav Biomed Mater 2018;87:180-9. https://doi.org/10.1016/j.jmbbm.2018.07.034
  31. Sorrentino R, Triulzio C, Tricarico MG, Bonadeo G, Gherlone EF, Ferrari M. In vitro analysis of the fracture resistance of CAD-CAM monolithic zirconia molar crowns with different occlusal thickness. J Mech Behav Biomed Mater 2016;61:328-33. https://doi.org/10.1016/j.jmbbm.2016.04.014
  32. Choi S, Yoon HI, Park EJ. Load-bearing capacity of various CAD/CAM monolithic molar crowns under recommended occlusal thickness and reduced occlusal thickness conditions. J Adv Prosthodont 2017;9:423-31. https://doi.org/10.4047/jap.2017.9.6.423
  33. Dahl BL. Dentine/pulp reactions to full crown preparation procedures. J Oral Rehabil 1977;4:247-54. https://doi.org/10.1111/j.1365-2842.1977.tb00989.x
  34. Vigolo P, Mutinelli S, Biscaro L, Stellini E. An in vivo evaluation of the fit of zirconium-oxide based, ceramic single crowns with vertical and horizontal finish line preparations. J Prosthodont 2015;24:603-9. https://doi.org/10.1111/jopr.12340
  35. Philipp A, Fischer J, Hammerle CH, Sailer I. Novel ceria-stabilized tetragonal zirconia/alumina nanocomposite as framework material for posterior fixed dental prostheses: preliminary results of a prospective case series at 1 year of function. Quintessence Int 2010;41:313-9.
  36. Pera P, Gilodi S, Bassi F, Carossa S. In vitro marginal adaptation of alumina porcelain ceramic crowns. J Prosthet Dent 1994;72:585-90. https://doi.org/10.1016/0022-3913(94)90289-5
  37. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11. https://doi.org/10.1038/sj.bdj.4802708
  38. Fransson B, Oilo G, Gjeitanger R. The fit of metal-ceramic crowns, a clinical study. Dent Mater 1985;1:197-9. https://doi.org/10.1016/S0109-5641(85)80019-1
  39. Freire Y, Gonzalo E, Lopez-Suarez C, Suarez MJ. The marginal fit of CAD/CAM monolithic ceramic and metal-ceramic crowns. J Prosthodont 2019;28:299-304. https://doi.org/10.1111/jopr.12590
  40. Ha SJ, Cho JH. Comparison of the fit accuracy of zirconiabased prostheses generated by two CAD/CAM systems. J Adv Prosthodont 2016;8:439-48. https://doi.org/10.4047/jap.2016.8.6.439
  41. Shembesh M, Ali A, Finkelman M, Weber HP, Zandparsa R. An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. J Prosthodont 2017;26:581-6. https://doi.org/10.1111/jopr.12446
  42. Ji MK, Park JH, Park SW, Yun KD, Oh GJ, Lim HP. Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown. J Adv Prosthodont 2015;7:271-7. https://doi.org/10.4047/jap.2015.7.4.271
  43. Kale E, Seker E, Yilmaz B, Ozcelik TB. Effect of cement space on the marginal fit of CAD-CAM-fabricated monolithic zirconia crowns. J Prosthet Dent 2016;116:890-5. https://doi.org/10.1016/j.prosdent.2016.05.006
  44. Kocaagaoglu H, Kilinc HI, Albayrak H. Effect of digital impressions and production protocols on the adaptation of zirconia copings. J Prosthet Dent 2017;117:102-8. https://doi.org/10.1016/j.prosdent.2016.06.004
  45. Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study. Int J Oral Maxillofac Implants 2002;17:793-8.
  46. Pandoleon P, Kontonasaki E, Kantiranis N, Pliatsikas N, Patsalas P, Papadopoulou L, Zorba T, Paraskevopoulos KM, Koidis P. Aging of 3Y-TZP dental zirconia and yttrium depletion. Dent Mater 2017;33:e385-92. https://doi.org/10.1016/j.dental.2017.07.011
  47. Lai X, Si W, Jiang D, Sun T, Shao L, Deng B. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia. J Dent 2017;66:23-31. https://doi.org/10.1016/j.jdent.2017.09.003
  48. Yang SW, Kim JE, Shin Y, Shim JS, Kim JH. Enamel wear and aging of translucent zirconias: In vitro and clinical studies. J Prosthet Dent 2019;121:417-25. https://doi.org/10.1016/j.prosdent.2018.04.016
  49. Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: Contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater 2016;59:128-38. https://doi.org/10.1016/j.jmbbm.2015.11.040
  50. Munoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dent 2017;63:94-102. https://doi.org/10.1016/j.jdent.2017.05.021

Cited by

  1. Evaluation of Marginal/Internal Fit and Fracture Load of Monolithic Zirconia and Zirconia Lithium Silicate (ZLS) CAD/CAM Crown Systems vol.14, pp.21, 2020, https://doi.org/10.3390/ma14216346