DOI QR코드

DOI QR Code

Synthesis and Characterization of BaTiO3 Powder by Solid State Method

고상반응법을 이용한 BaTiO3 합성 및 특성 평가

  • Kim, Yong Jin (Department of Electrical and Electronic Engineering, Korea University) ;
  • Choi, Moon Hee (Nanometerials and Nanotechnology Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Shin, Hyo Soon (Nanometerials and Nanotechnology Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Ju, Byeong-Kwon (Department of Electrical and Electronic Engineering, Korea University) ;
  • Chun, Myoung Pyo (Nanometerials and Nanotechnology Center, Korea Institute of Ceramic Engineering & Technology)
  • 김용진 (고려대학교 전기전자공학과) ;
  • 최문희 (한국세라믹기술원 나노소재공정센터) ;
  • 신효순 (한국세라믹기술원 나노소재공정센터) ;
  • 주병권 (고려대학교 전기전자공학과) ;
  • 전명표 (한국세라믹기술원 나노소재공정센터)
  • Received : 2020.08.26
  • Accepted : 2020.09.14
  • Published : 2020.11.01

Abstract

BaTiO3 powder was synthesized by a solid-state reaction using BaCO3 and TiO2. Different calcination temperatures (800℃, 850℃, 900℃, and 950℃) were set to investigate their effects on the properties of BaTiO3 powder. The synthesized BaTiO3 phase was confirmed to be a single phase by XRD, and the tetragonality (c/a) and crystallite size were calculated. Thereafter, each calcinated BaTiO3 was sintered at five different sintering temperatures (1,100℃, 1,150℃, 1,200℃, 1,250℃, and 1,300℃), and the tetragonality, density, porosity, dielectric constant, and grain size were measured. As the calcination temperature increased, the tetragonality and crystallite size also increased, to 1.008 and 66 nm, respectively, at 950℃. Moreover, most pellets showed increased density, dielectric constant, and tetragonality as the sintering temperature increased up to 1,250℃; the same parameters slightly decreased at 1,300℃. It is noteworthy that the tetragonality of BaTiO3 at 1,250℃ exhibits a very high c/a value of 1.0084. In addition, the grain size and dielectric constant measured near the Curie temperature increased as the sintering temperature increased.

Keywords

References

  1. R. Ashiri, RSC Adv., 6, 17138 (2016). [DOI: https://doi.org/10.1039/c5ra22942a]
  2. J. L. Clabel H, I. T. Awan, A. H. Pinto, I. C. Nogueira, V.D.N. Bezzon, E. R. Leite, D. T. Balogh, V. R. Mastelaro, S. O. Ferreira, and E. Marega Jr, Ceram. Int., 46, 2987 (2020). [DOI: https://doi.org/10.1016/j.ceramint.2019.09.296]
  3. T. Hoshina, J. Ceram. Soc. Jpn., 121, 156 (2013). [DOI: https://doi.org/10.2109/jcersj2.121.156]
  4. H. P. Klug and L. E. Alexander, X-ray Diffraction Procedure For Polycrystalline and Amorphous Materials (Wiley, New York, 1974) p. 687.
  5. W. Maison, R. Kleeberg, R. B. Heimann, and S. Phanichphant, J. Eur. Ceram. Soc., 23, 127 (2003). [DOI: https://doi.org/10.1016/S0955-2219(02)00071-7]
  6. N. M. Zali, C. S. Mahmood, S. M. Mohamad, C. T. Foo, and J. A. Murshidi, AIP Conf. Proc., 1584, 160 (2014). [DOI: https://doi.org/10.1063/1.4866124]
  7. K. Uchino, E. Sadanaga, and T. Hirose, J. Am. Ceram. Soc., 72, 1555 (1989). [DOI: https://doi.org/10.1111/j.1151-2916.1989.tb07706.x]
  8. M. Yashima, T. Hoshina, D. Ishimura, S. Kobayashi, W. Nakamura, T. Tsurumi, and S. Wada, J. Appl. Phys., 98 014313 (2005). [DOI: https://doi.org/10.1063/1.1935132]
  9. M. B. Smith, K. Page, T. Siegrist, P. L. Redmond, E. C. Walter, R. S eshadri, L . E. B rus, and M. L. Steigerw ald, J. Am. Chem. Soc., 130, 6955 (2008). [DOI: https://doi.org/10.1021/ja0758436]
  10. C. Fang, L. Y. Chen, and D. X. Zhou, Phys. B, 409, 83 (2013). [DOI: https://doi.org/10.1016/j.physb.2012.10.016]
  11. Y. Shi, Y. Pu, Y. Cui, and Y. Luo, J. Mater. Sci.: Mater. Electron., 28, 13229 (2017). [DOI: https://doi.org/10.1007/s10854-017-7158-1]
  12. J. F. Ihlefeld, D. T. Harris, R. Keech, J. L. Jones, J. P. Maria, and S. Trolier-McKinstry, J. Am. Ceram. Soc., 99, 2537 (2016). [DOI: https://doi.org/10.1111/jace.14387]
  13. Z. Zhao, V. Buscaglia, M. Viviani, M. T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni, Phys. Rev. B, 70, 024107 (2004). [DOI: https://doi.org/10.1103/PhysRevB.70.024107]
  14. A. A. Kholodkova, M. N. Danchevskaya, Y. D. Ivakin, A. D. Smirnov, S. G. Ponomarev, A. S. Fionov, and V. V. Kolesov, Ceram. Int., 45, 23050 (2019). [DOI: https://doi.org/10.1016/j.ceramint.2019.07.353]
  15. G. Picht, H. Kungl, M. Baurer, and M. J. Hoffmann, Funct. Mater. Lett., 3, 59 (2010). [DOI: https://doi.org/10.1142/S1793604710000889]
  16. K. R. Kambale, A. R. Kulkarni, and N. Venkataramani, Ceram. Int., 40, 667 (2014). [DOI: https://doi.org/10.1016/j.ceramint.2013.06.053]
  17. W. Luan, L. Gao, and J. Guo, Ceram. Int., 25, 727 (1999). [DOI: https://doi.org/10.1016/S0272-8842(99)00009-7]
  18. Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, and H. Yan, Sci. Rep., 5, 9953 (2015). [DOI: https://doi.org/10.1038/srep09953]
  19. K. Kinoshita and A. Yamaji, J. Appl. Phys., 47, 371 (1976). [DOI: https://doi.org/10.1063/1.322330]
  20. T. Tsurumi, T. Hoshina, K. Takizawa, and H. Kakemoto, Proc. 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (Santa Fe, New Mexico, USA, 2008) p. 1. [DOI: https://doi.org/10.1109/ISAF.2008.4693883]