DOI QR코드

DOI QR Code

대향류 화염에서의 합성가스 내 수소 함량에 따른 연소 특성 변화에 관한 수치해석 연구

Numerical Study of Combustion Characteristics for Hydrogen Content in Syngas in Opposed-Flow Flame

  • 투고 : 2020.09.07
  • 심사 : 2020.10.30
  • 발행 : 2020.10.30

초록

Various researches are being conducted to reduce greenhouse gases generated by the consumption of traditional energy resources. This study was conducted to numerically analyze the combustion characteristics and N-S reaction behavior with respect to the H2 content of syngas composed of CO and H2 in pressurized air combustion. A non-premixed opposed flow flame model was applied a modified detailed mechanism with S-chemistry was developed based on GRI 3.0 to simulate the syngas reaction. As the hydrogen content increased, the flame thickness increased due to the fast reactivity of hydrogen. In the rich region, NO and SO2 were reduced by reaction with H radical and H bonding of NO was suppressed by the formation of HOSO.

키워드

참고문헌

  1. A. Arregi, M. Amutio, G. Lopez, J. Bilbao, and M. Olazar, "Evaluation of thermochemical routes for hydrogen production from biomass: a review", Energy Convers. Manag., Vol. 165, 2018, pp. 696-719, doi: https://doi.org/10.1016/j.enconman.2018.03.089.
  2. K. Liu, C. Song, and V. Subramani, "Hydrogen and syngas production and purification technologies", A John Wiley & Sons, Inc., USA, 2010, pp. 127-155.
  3. M. Binder, M. Kraussler, M. Kuba, and L. Luisse, "Hydrogen from biomass gasification", IEA Bioenergy, 2018. Retrieved from https://www.ieabioenergy.com/wp-content/uploads/2019/01/Wasserstoffstudie_IEA-final.pdf.
  4. Ministry of Trade, Industry and Energy, "Roadmap to vitalize the hydrogen economy", Ministry of Trade, Industry and Energy, 2019. Retrieved from http://www.motie.go.kr/motie/py/td/tradeinvest/bbs/bbsView.do?bbs_cd_n=72&cate_n=2&bbs_seq_n=210222.
  5. Ministry of Trade, Industry and Energy, "Roadmap to develop the hydrogen technology", Ministry of Trade, Industry and Energy, 2019. Retrieved from http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_cd_n=81&bbs_seq_n=162264.
  6. Y. Qian, S. Sun, D. Ju, X. Shan, and X. Lu, "Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines", Renew. Sust. Energ. Rev., Vol. 69, 2017, pp. 50-58, doi: https://doi.org/10.1016/j.rser.2016.11.059.
  7. M. C. Lee, S. B. Seo, J. H. Chung, S. M. Kim, Y. J. Joo, and D. H. Ahn, "Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas", Fuel, Vol. 89, No. 7, 2010, pp. 1485-1491, doi: https://doi.org/10.1016/j.fuel.2009.10.004.
  8. Y. H. Jiang, G. X. Li, H. M. Li, L. Li, and G. P. Zhang, "Experimental study on the turbulent premixed combustion characteristics of 70% H2/30% CO/air mixtures", Int. J. Hydrog. Energy, Vol. 44, No. 26, 2019, pp. 14012-14022, doi: https://doi.org/10.1016/j.ijhydene.2019.03.232.
  9. C. Linderholm, A. Cuadrat, and A. Lyngfelt, "Chemicallooping combustion of solid fuels in a 10 kWth pilot-batch tests with five fuels", Energy Procedia, Vol. 4, 2011, pp. 385-392, doi: https://doi.org/10.1016/j.egypro.2011.01.066.
  10. S. Sun, S. Meng, Y. Zhao, H. Xu, Y. Guo, and Y. Qin, "Experimental and theoretical studies of laminar flame speed of CO/$H_2$ in $O_2/H_2O$ atmosphere", Int. J. Hydrog. Energy, Vol. 41, No. 4, 2016, pp. 3273-3283, doi: https://doi.org/10.1016/j.ijhydene.2015.11.120.
  11. M. Fischer and X. Jiang, "A chemical kinetic modelling study of the combustion of $CH_4-CO-H_2-CO_2$ fuel mixtures", Comb. Flame, Vol. 167, 2016, pp. 274-293, doi: https://doi.org/10.1016/j.combustflame.2016.02.001.
  12. S. F. Ahmed, J. Santner, F. L. Dryer, B. Padak, and T. I. Farouk, "Computational study of NOx formation at conditions relevant to gas turbine operation, part 2: NOx in high hydrogen content fuel combustion at elevated pressure", Energy Fuels, Vol. 30, No. 9, 2016, pp. 7691-7703, doi: https://doi.org/10.1021/acs.energyfuels.6b00421.
  13. H. Li, G. Li, Z. Sun, Z. Zhou, Y. Li, and Y. Yuan, "Investigation on dilution effect on laminar burning velocity of syngas premixed flames", Energy, Vol. 112, 2016, pp. 146-152, doi: https://doi.org/10.1016/j.energy.2016.06.015.
  14. R. J. Kee, J. A. Miller, G. H. Evans, and G. Dixon-Lewis, "A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames", Symposium (International) on Combustion, Vol. 22, No. 1, pp. 1479-1494, 1988, doi: https://doi.org/10.1016/S0082-0784(89)80158-4.
  15. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, and Z. Qin. "How to cite GRI-MECH", GRI-MECH. Retrieved from http://combustion.berkeley.edu/gri-mech/version30/text30.html.
  16. K. Radtke and M. Heinritz-Adrian, "ThyssenKrupp Uhde's PRENFLO(R) and $HTW^{TM}$ Gasification Technologies: Global Update on Technology and Projects", Gasification Technologies Conference, 2011. Retrieved from https://www.netl.doe.gov/sites/default/files/netl-file/16RADTKE.pdf.
  17. D. Kim, H. Ahn, K. Y. Huh, and Y. Lee, "Numerical analysis of chemical characteristics of homogeneous CO/$H_2$/NO in pressurized oxy-fuel combustion", Trans. of the Korean Hydrogen and New Energy Society, Vol. 30, No. 4, 2019, pp. 320-329, doi: https://doi.org/10.7316/KHNES.2019.30.4.320.
  18. H. K. Chelliah, C. K. Law, T. Ueda, M. D. Smooke, and F. A. Williams, "An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames", Symposium (International) on Combustion, Vol. 23, No. 1, 1991, pp. 503-511, doi: https://doi.org/10.1016/S0082-0784(06)80297-3.
  19. C. L. Rasmussen, P. Glarborg, and P. Marshall, "Mechanisms of radical removal by SO2", P. Combust. Inst., Vol. 31, No. 1, 2007, pp. 339-347, doi: https://doi.org/10.1016/j.proci.2006.07.249.
  20. M. U. Alzueta, R. Bilbao, and P. Glarborg, "Inhibition and sensitization of fuel oxidation by $SO_2$", Combust. Flame, Vol. 127, No. 4, 2001, pp. 2234-2251, doi: https://doi.org/10.1016/S0010-2180(01)00325-X.
  21. M. A. Blitz, K. W. McKee, and M. J. Pilling, "Temperature dependence of the reaction of OH with SO", P. Combust. Inst., Vol. 28, No. 2, 2000, pp. 2491-2497, doi: https://doi.org/10.1016/S0082-0784(00)80664-5.
  22. A. Goumri, J. D. R. Rocha, D. Laakso, C. E. Smith, and P. Marshall, "Characterization of reaction pathways on the potential energy surfaces for H + $SO_2$ and HS + $O_2$", J. Phys. Chem. A, Vol. 103, No. 51, 1999, pp. 11328-11335, doi: https://doi.org/10.1021/jp9924070.
  23. K. Tsuchiya, K. Kamiya, and H. Matsui, "Studies on the oxidation mechanism of $H_2S$ based on direct examination of the key reactions", Int. J. Chem. Kinet., Vol. 29, No. 1, 1997, pp. 57-66, doi: https://doi.org/10.1002/(SICI)1097-4601(1997)29:1<57::AID-KIN7>3.0.CO;2-K.
  24. M. A. Blitz, K. J. Hughes, M. J. Pillling, and S. H. Robertson, "Combined experimental and master equation investigation of the multiwell reaction H+ $SO_2$", J. Phys. Chem. A, Vol. 110, No. 9, 2006, pp. 2996-3009, doi: https://doi.org/10.1021/jp054722u.
  25. J. Naidoo, A. Goumri, and P. Marshall, "A kinetic study of the reaction of atomic oxygen with $SO_2$", Proc. Combust. Inst., Vol. 30, No. 1, 2005, pp. 1219-1225, doi: https://doi.org/10.1016/j.proci.2004.08.214.
  26. A. Yilmaz, L. Hindiyarti, A. D. Jensen, P. Glarborg, and P. Marshall, "Thermal dissociation of $SO_3$ at 100-1400K", J. Phys. Chem. A, Vol. 110, No. 21, 2006, pp. 6654-6659, doi: https://doi.org/10.1021/jp0557215.
  27. M. A. Blitz, K. J. Hughes, and M. J. Pilling, "Determination of the high-pressure limiting rate coefficient and the enthalpy of reaction for OH+$SO_2$", J. Phys. Chem. A, Vol. 107, No. 12, 2003, pp. 1971-1978, doi: https://doi.org/10.1021/jp026524y.
  28. G. B. Bacskay and J. C. Mackie, "Oxidation of CO by $SO_2$: a theoretical study", J. Phys. Chem. A, Vol. 109, No. 9, 2005, pp. 2019-2025, doi: https://doi.org/10.1021/jp045086n.
  29. Y. Murakami, S. Onishi, T. Kobayashi, N. Fujii, N. Isshiki, K. Tsuchiya, A. Tezaki, and H. Matsui, "High temperature reaction of S + $SO_2\;{\rightarrow}$ SO + SO: Implication of $S_2O_2$ intermediate complex formation", J. Phys. Chem. A, Vol. 107, No. 50, 2003, pp. 10996-11000, doi: https://doi.org/10.1021/jp030471i.
  30. O. I. Smith, S. Tseregounis, and S. N. Wang, "High-temperature kinetics of the reactions of $SO_2$ and $SO_3$ with atomic oxygen", Int. J. Chem. Kinet., Vol. 14, No. 6, 1982, pp. 679-697, doi: https://doi.org/10.1002/kin.550140610.
  31. P. Glarborg, D. Kubel, K. Dam-Johansen, H. M. Chiang, and J. W. Bozzelli, "Impact of $SO_2$ and NO on CO oxidation under post-flame conditions", Int. J. Chem. Kinet., Vol. 28, No. 10, 1996, pp. 773-790, doi: https://doi.org/10.1002/(SICI)1097-4601(1996)28:10<773::AID-KIN8>3.0.CO;2-K.
  32. R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson Jr, J. A. Kerr, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry", J. Phys. Chem. Ref. Data, Vol. 21, No. 6, 1992, pp. 1125-1568, doi: https://doi.org/10.1063/1.555918.
  33. W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, "Chemical kinetics and photochemical data for use in stratospheric modeling", Evaluation Number 12, JPL Publication 97-4, 1997. Retrieved from https://jpldataeval.jpl.nasa.gov/pdf/Atmos97_Anotated.pdf.
  34. H. Shiina, A. Miyoshi, and H. Matsui, "Investigation on the insertion channel in the S(3P) + H2 reaction", J. Phys. Chem. A, Vol. 102, No. 20, 1998, pp. 3556-3559, doi: https://doi.org/10.1021/jp980650d.
  35. M. A. A. Clyne and P. D. Whitefield, "Atomic resonance fluorescence for rate constants of rapid bimolecular reactions. Part 7.-Sulphur atom reactions: $S+O_2{\rightarrow}SO+O$ and $S+NO_2{\rightarrow}SO+NO$ from 296 to 410 K", J. Chem. Soc. Faraday Trans. 2, Vol. 75, 1979, pp. 1327-1340, doi: https://doi.org/10.1039/F29797501327.
  36. H. Freund and H. B. Palmer, "Shock-tube studies of the reactions of $NO_2$ with $NO_2$, $SO_2$, and CO", Int. J. Chem. Kinet., Vol. 9, No. 6, 1977, pp. 887-905, doi: https://doi.org/10.1002/kin.550090605.
  37. J. Brunning and L. J. Stief, "Kinetic studies of the reaction of the SO radical with $NO_2$ and ClO from 210 to 363 K", J. Chem. Phys., Vol. 84, No. 8, 1986, pp. 4371-4377, doi: https://doi.org/10.1063/1.450059.
  38. A. Jacob and C. A. Winkler, "Kinetics of the reactions of oxygen atoms and nitrogen atoms with sulphur trioxide", J. Chem. Soc. Faraday Trans. 1, Vol. 68, 1972, pp. 2077-2082, doi: https://doi.org/10.1039/F19726802077.
  39. R. Atkinson and J. N. Pitts Jr, "Kinetics of the reaction O(3P) + $SO_2$ + M ${\rightarrow}\;SO_3$ + M over the temperature range of $299^{\circ}-440^{\circ}K$", Int. J. Chem. Kinet., Vol. 10, No. 10, 1978, pp. 1081-1090, doi: https://doi.org/10.1002/kin.550101006.
  40. K. Ravichandran, R. Williams, and T. R. Fletcher, "Atmospheric reactions of vibrationally excited greenhouse gases: SH+ $N_2O$ (n, 0, 0)", Chem. Phys. Lett., Vol. 217, No. 4, 1994, pp. 375-380, doi: https://doi.org/10.1016/0009-2614(93)E1411-9.