References
- A. Arregi, M. Amutio, G. Lopez, J. Bilbao, and M. Olazar, "Evaluation of thermochemical routes for hydrogen production from biomass: a review", Energy Convers. Manag., Vol. 165, 2018, pp. 696-719, doi: https://doi.org/10.1016/j.enconman.2018.03.089.
- K. Liu, C. Song, and V. Subramani, "Hydrogen and syngas production and purification technologies", A John Wiley & Sons, Inc., USA, 2010, pp. 127-155.
- M. Binder, M. Kraussler, M. Kuba, and L. Luisse, "Hydrogen from biomass gasification", IEA Bioenergy, 2018. Retrieved from https://www.ieabioenergy.com/wp-content/uploads/2019/01/Wasserstoffstudie_IEA-final.pdf.
- Ministry of Trade, Industry and Energy, "Roadmap to vitalize the hydrogen economy", Ministry of Trade, Industry and Energy, 2019. Retrieved from http://www.motie.go.kr/motie/py/td/tradeinvest/bbs/bbsView.do?bbs_cd_n=72&cate_n=2&bbs_seq_n=210222.
- Ministry of Trade, Industry and Energy, "Roadmap to develop the hydrogen technology", Ministry of Trade, Industry and Energy, 2019. Retrieved from http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_cd_n=81&bbs_seq_n=162264.
- Y. Qian, S. Sun, D. Ju, X. Shan, and X. Lu, "Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines", Renew. Sust. Energ. Rev., Vol. 69, 2017, pp. 50-58, doi: https://doi.org/10.1016/j.rser.2016.11.059.
- M. C. Lee, S. B. Seo, J. H. Chung, S. M. Kim, Y. J. Joo, and D. H. Ahn, "Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas", Fuel, Vol. 89, No. 7, 2010, pp. 1485-1491, doi: https://doi.org/10.1016/j.fuel.2009.10.004.
- Y. H. Jiang, G. X. Li, H. M. Li, L. Li, and G. P. Zhang, "Experimental study on the turbulent premixed combustion characteristics of 70% H2/30% CO/air mixtures", Int. J. Hydrog. Energy, Vol. 44, No. 26, 2019, pp. 14012-14022, doi: https://doi.org/10.1016/j.ijhydene.2019.03.232.
- C. Linderholm, A. Cuadrat, and A. Lyngfelt, "Chemicallooping combustion of solid fuels in a 10 kWth pilot-batch tests with five fuels", Energy Procedia, Vol. 4, 2011, pp. 385-392, doi: https://doi.org/10.1016/j.egypro.2011.01.066.
-
S. Sun, S. Meng, Y. Zhao, H. Xu, Y. Guo, and Y. Qin, "Experimental and theoretical studies of laminar flame speed of CO/
$H_2$ in$O_2/H_2O$ atmosphere", Int. J. Hydrog. Energy, Vol. 41, No. 4, 2016, pp. 3273-3283, doi: https://doi.org/10.1016/j.ijhydene.2015.11.120. -
M. Fischer and X. Jiang, "A chemical kinetic modelling study of the combustion of
$CH_4-CO-H_2-CO_2$ fuel mixtures", Comb. Flame, Vol. 167, 2016, pp. 274-293, doi: https://doi.org/10.1016/j.combustflame.2016.02.001. - S. F. Ahmed, J. Santner, F. L. Dryer, B. Padak, and T. I. Farouk, "Computational study of NOx formation at conditions relevant to gas turbine operation, part 2: NOx in high hydrogen content fuel combustion at elevated pressure", Energy Fuels, Vol. 30, No. 9, 2016, pp. 7691-7703, doi: https://doi.org/10.1021/acs.energyfuels.6b00421.
- H. Li, G. Li, Z. Sun, Z. Zhou, Y. Li, and Y. Yuan, "Investigation on dilution effect on laminar burning velocity of syngas premixed flames", Energy, Vol. 112, 2016, pp. 146-152, doi: https://doi.org/10.1016/j.energy.2016.06.015.
- R. J. Kee, J. A. Miller, G. H. Evans, and G. Dixon-Lewis, "A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames", Symposium (International) on Combustion, Vol. 22, No. 1, pp. 1479-1494, 1988, doi: https://doi.org/10.1016/S0082-0784(89)80158-4.
- G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, and Z. Qin. "How to cite GRI-MECH", GRI-MECH. Retrieved from http://combustion.berkeley.edu/gri-mech/version30/text30.html.
-
K. Radtke and M. Heinritz-Adrian, "ThyssenKrupp Uhde's PRENFLO(R) and
$HTW^{TM}$ Gasification Technologies: Global Update on Technology and Projects", Gasification Technologies Conference, 2011. Retrieved from https://www.netl.doe.gov/sites/default/files/netl-file/16RADTKE.pdf. -
D. Kim, H. Ahn, K. Y. Huh, and Y. Lee, "Numerical analysis of chemical characteristics of homogeneous CO/
$H_2$ /NO in pressurized oxy-fuel combustion", Trans. of the Korean Hydrogen and New Energy Society, Vol. 30, No. 4, 2019, pp. 320-329, doi: https://doi.org/10.7316/KHNES.2019.30.4.320. - H. K. Chelliah, C. K. Law, T. Ueda, M. D. Smooke, and F. A. Williams, "An experimental and theoretical investigation of the dilution, pressure and flow-field effects on the extinction condition of methane-air-nitrogen diffusion flames", Symposium (International) on Combustion, Vol. 23, No. 1, 1991, pp. 503-511, doi: https://doi.org/10.1016/S0082-0784(06)80297-3.
- C. L. Rasmussen, P. Glarborg, and P. Marshall, "Mechanisms of radical removal by SO2", P. Combust. Inst., Vol. 31, No. 1, 2007, pp. 339-347, doi: https://doi.org/10.1016/j.proci.2006.07.249.
-
M. U. Alzueta, R. Bilbao, and P. Glarborg, "Inhibition and sensitization of fuel oxidation by
$SO_2$ ", Combust. Flame, Vol. 127, No. 4, 2001, pp. 2234-2251, doi: https://doi.org/10.1016/S0010-2180(01)00325-X. - M. A. Blitz, K. W. McKee, and M. J. Pilling, "Temperature dependence of the reaction of OH with SO", P. Combust. Inst., Vol. 28, No. 2, 2000, pp. 2491-2497, doi: https://doi.org/10.1016/S0082-0784(00)80664-5.
-
A. Goumri, J. D. R. Rocha, D. Laakso, C. E. Smith, and P. Marshall, "Characterization of reaction pathways on the potential energy surfaces for H +
$SO_2$ and HS +$O_2$ ", J. Phys. Chem. A, Vol. 103, No. 51, 1999, pp. 11328-11335, doi: https://doi.org/10.1021/jp9924070. -
K. Tsuchiya, K. Kamiya, and H. Matsui, "Studies on the oxidation mechanism of
$H_2S$ based on direct examination of the key reactions", Int. J. Chem. Kinet., Vol. 29, No. 1, 1997, pp. 57-66, doi: https://doi.org/10.1002/(SICI)1097-4601(1997)29:1<57::AID-KIN7>3.0.CO;2-K. -
M. A. Blitz, K. J. Hughes, M. J. Pillling, and S. H. Robertson, "Combined experimental and master equation investigation of the multiwell reaction H+
$SO_2$ ", J. Phys. Chem. A, Vol. 110, No. 9, 2006, pp. 2996-3009, doi: https://doi.org/10.1021/jp054722u. -
J. Naidoo, A. Goumri, and P. Marshall, "A kinetic study of the reaction of atomic oxygen with
$SO_2$ ", Proc. Combust. Inst., Vol. 30, No. 1, 2005, pp. 1219-1225, doi: https://doi.org/10.1016/j.proci.2004.08.214. -
A. Yilmaz, L. Hindiyarti, A. D. Jensen, P. Glarborg, and P. Marshall, "Thermal dissociation of
$SO_3$ at 100-1400K", J. Phys. Chem. A, Vol. 110, No. 21, 2006, pp. 6654-6659, doi: https://doi.org/10.1021/jp0557215. -
M. A. Blitz, K. J. Hughes, and M. J. Pilling, "Determination of the high-pressure limiting rate coefficient and the enthalpy of reaction for OH+
$SO_2$ ", J. Phys. Chem. A, Vol. 107, No. 12, 2003, pp. 1971-1978, doi: https://doi.org/10.1021/jp026524y. -
G. B. Bacskay and J. C. Mackie, "Oxidation of CO by
$SO_2$ : a theoretical study", J. Phys. Chem. A, Vol. 109, No. 9, 2005, pp. 2019-2025, doi: https://doi.org/10.1021/jp045086n. -
Y. Murakami, S. Onishi, T. Kobayashi, N. Fujii, N. Isshiki, K. Tsuchiya, A. Tezaki, and H. Matsui, "High temperature reaction of S +
$SO_2\;{\rightarrow}$ SO + SO: Implication of$S_2O_2$ intermediate complex formation", J. Phys. Chem. A, Vol. 107, No. 50, 2003, pp. 10996-11000, doi: https://doi.org/10.1021/jp030471i. -
O. I. Smith, S. Tseregounis, and S. N. Wang, "High-temperature kinetics of the reactions of
$SO_2$ and$SO_3$ with atomic oxygen", Int. J. Chem. Kinet., Vol. 14, No. 6, 1982, pp. 679-697, doi: https://doi.org/10.1002/kin.550140610. -
P. Glarborg, D. Kubel, K. Dam-Johansen, H. M. Chiang, and J. W. Bozzelli, "Impact of
$SO_2$ and NO on CO oxidation under post-flame conditions", Int. J. Chem. Kinet., Vol. 28, No. 10, 1996, pp. 773-790, doi: https://doi.org/10.1002/(SICI)1097-4601(1996)28:10<773::AID-KIN8>3.0.CO;2-K. - R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson Jr, J. A. Kerr, and J. Troe, "Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry", J. Phys. Chem. Ref. Data, Vol. 21, No. 6, 1992, pp. 1125-1568, doi: https://doi.org/10.1063/1.555918.
- W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, "Chemical kinetics and photochemical data for use in stratospheric modeling", Evaluation Number 12, JPL Publication 97-4, 1997. Retrieved from https://jpldataeval.jpl.nasa.gov/pdf/Atmos97_Anotated.pdf.
- H. Shiina, A. Miyoshi, and H. Matsui, "Investigation on the insertion channel in the S(3P) + H2 reaction", J. Phys. Chem. A, Vol. 102, No. 20, 1998, pp. 3556-3559, doi: https://doi.org/10.1021/jp980650d.
-
M. A. A. Clyne and P. D. Whitefield, "Atomic resonance fluorescence for rate constants of rapid bimolecular reactions. Part 7.-Sulphur atom reactions:
$S+O_2{\rightarrow}SO+O$ and$S+NO_2{\rightarrow}SO+NO$ from 296 to 410 K", J. Chem. Soc. Faraday Trans. 2, Vol. 75, 1979, pp. 1327-1340, doi: https://doi.org/10.1039/F29797501327. -
H. Freund and H. B. Palmer, "Shock-tube studies of the reactions of
$NO_2$ with$NO_2$ ,$SO_2$ , and CO", Int. J. Chem. Kinet., Vol. 9, No. 6, 1977, pp. 887-905, doi: https://doi.org/10.1002/kin.550090605. -
J. Brunning and L. J. Stief, "Kinetic studies of the reaction of the SO radical with
$NO_2$ and ClO from 210 to 363 K", J. Chem. Phys., Vol. 84, No. 8, 1986, pp. 4371-4377, doi: https://doi.org/10.1063/1.450059. - A. Jacob and C. A. Winkler, "Kinetics of the reactions of oxygen atoms and nitrogen atoms with sulphur trioxide", J. Chem. Soc. Faraday Trans. 1, Vol. 68, 1972, pp. 2077-2082, doi: https://doi.org/10.1039/F19726802077.
-
R. Atkinson and J. N. Pitts Jr, "Kinetics of the reaction O(3P) +
$SO_2$ + M${\rightarrow}\;SO_3$ + M over the temperature range of$299^{\circ}-440^{\circ}K$ ", Int. J. Chem. Kinet., Vol. 10, No. 10, 1978, pp. 1081-1090, doi: https://doi.org/10.1002/kin.550101006. -
K. Ravichandran, R. Williams, and T. R. Fletcher, "Atmospheric reactions of vibrationally excited greenhouse gases: SH+
$N_2O$ (n, 0, 0)", Chem. Phys. Lett., Vol. 217, No. 4, 1994, pp. 375-380, doi: https://doi.org/10.1016/0009-2614(93)E1411-9.