DOI QR코드

DOI QR Code

우주탐사용 직접 수소화붕소나트륨/과산화수소 연료전지의 환원극 촉매

Cathode Catalyst of Direct Borohydride/Hydrogen Peroxide Fuel Cell for Space Exploration

  • 유수상 (창원대학교 기계공학부) ;
  • 오택현 (창원대학교 기계공학부)
  • YU, SU SANG (Department of Mechanical Engineering, College of Mechatronics, Changwon National University) ;
  • OH, TAEK HYUN (Department of Mechanical Engineering, College of Mechatronics, Changwon National University)
  • 투고 : 2020.08.28
  • 심사 : 2020.10.30
  • 발행 : 2020.10.30

초록

This study investigated the cathode catalyst of direct borohydride/hydrogen peroxide fuel cells for space exploration. Various catalysts such as Au, Ag, and Ni were supported on multiwalled carbon nanotubes (MWCNTs). Various techniques, such as transmission electron microscopy, Brunauer-Emmett-Teller method, scanning electron microscopy, and X-ray diffraction were conducted to investigate the characteristics of the catalysts. Fuel cell tests were performed to evaluate the performance of the catalysts. Ag/MWCNTs exhibited better catalytic activity than the Ni/MWCNTs and better catalytic selectivity of the Au/MWCNTs. Ag/MWCNTs presented good catalytic activity and selectivity even at an elevated operating temperature. The performance of Ag/MWCNTs was also stable for up to 60 minutes.

키워드

참고문헌

  1. T. H. Oh, "Design specifications of direct borohydride-hydrogen peroxide fuel cell system for space missions", Aerosp. Sci. Technol., Vol. 58, 2016, pp. 511-517, doi: https://doi.org/10.1016/j.ast.2016.09.012.
  2. T. H. Oh, B. Jang, and S. Kwon, "Estimating the energy density of direct borohydride-hydrogen peroxide fuel cell s ystems for air-independent propulsion applications", Energy, Vol. 90, No. 1, 2015, pp. 980-986, doi: https://doi.org/10.1016/j.energy.2015.08.002.
  3. G. H. Miley, N. Luo, J. Mather, R. Burton, G. Hawkins, L. Gu, E. Byrd, R. Gimlin, P. J. Shrestha, G. Benavides, J. Laystrom, and D. Carroll, "Direct $NaBH_4/H_2O_2$ fuel cells", J. Power Sources, Vol. 165, No. 2, 2007, pp. 509-516, doi: https://doi.org/10.1016/j.jpowsour.2006.10.062.
  4. L. Gu, N. Luo, and G. H. Miley, "Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell", J. Power Sources, Vol. 173, No. 1, 2007, pp. 77-85, doi: https://doi.org/10.1016/j.jpowsour.2007.05.005.
  5. Z. Wang, J. Parrondo, C. He, S. Sankarasubramanian, and V. Ramani, "Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells", Nat. Energy, Vol. 4, No. 4, 2019, pp. 281-289, doi: https://doi.org/10.1038/s41560-019-0330-5.
  6. W. Haijun, W. Cheng, L. Zhixiang, and M. Zongqiang, "Influence of operation conditions on direct $NaBH_4/H_2O_2$ fuel cell performance", Int. J. Hydrogen Energy, Vol. 35, No. 7, 2010, pp. 2648-2651, doi: https://doi.org/10.1016/j.ijhydene.2009.04.020.
  7. C. P. Leon, F. C. Walsh, C. J. Patrissi, M. G. Medeiros, R. R. Bessette, R. W. Reeve, J. B. Lakeman, A. Rose, and D. Browning, "A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated microfibrous carbon cathode", Electrochem. Commun., Vol. 10, No. 10, 2008, pp. 1610-1613, doi: https://doi.org/10.1016/j.elecom.2008.08.006.
  8. R. C. P. Oliveira, M. Vasic, D. M. F. Santos, B. Babic, R. Hercigonja, C. A. C. Sequeira, and B. Sljukic, "Performance assessment of a direct borohydride-peroxide fuel cell with Pd-impregnated faujasite X zeolite as anode electrocatalyst", Electrochim. Acta, Vol. 269, 2018, pp. 517-525, doi: https://doi.org/10.1016/j.electacta.2018.03.021.
  9. M. G. Hosseini and R. Mahmoodi, "Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: the effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/multiwalled carbon nanotubes on the cell performance", J. Power Sources, Vol. 370, 2017, pp. 87-97, doi: https://doi.org/10.1016/j.jpowsour.2017.10.017.
  10. R. Mahmoodi, M. G. Hosseini, and H. Rasouli, "Enhancement of output power density and performance of direct borohydride-hydrogen peroxide fuel cell using Ni-Pd core-shell nanoparticles on polymeric composite supports (rGO-PANI) as novel electrocatalysts", Appl. Catal. B-Environ., Vol. 251, 2019, pp. 37-48, doi: https://doi.org/10.1016/j.apcatb.2019.03.064.
  11. R. K. Raman, N. A. Choudhury, and A. K. Shukla, "A high output voltage direct borohydride fuel cell", Electrochem. Solid St., Vol. 7, No. 12, 2004, pp. A488-A491, doi: https://doi.org/10.1149/1.1817855.
  12. T. H. Oh, B. Jang, and S. Kwon, "Electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride-hydrogen peroxide fuel cell", Int. J. Hydrogen Energy, Vol. 39, No. 13, 2014, pp. 6977-6986, doi: https://doi.org/10.1016/j.ijhydene.2014.02.117.
  13. T. H. Oh, B. Jang, and S. Kwon, "Performance evaluation of direct borohydride-hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes", Energy, Vol. 76, 2014, pp. 911-919, doi: https://doi.org/10.1016/j.energy.2014.09.002.