DOI QR코드

DOI QR Code

활성탄 담지 몰리브덴 촉매를 이용한 합성가스 직접 메탄화 반응

Direct Methanation of Syngas over Activated Charcoal Supported Molybdenum Catalyst

  • 김성수 (한국에너지기술연구원 에너지자원순환연구실) ;
  • 이승재 (한국에너지기술연구원 에너지자원순환연구실) ;
  • 박성열 (한국에너지기술연구원 에너지자원순환연구실) ;
  • 김진걸 (순천향대학교 나노화학공학과)
  • KIM, SEONG-SOO (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research) ;
  • LEE, SEUNG-JAE (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research) ;
  • PARK, SUNG-YOUL (Energy Resources Upcycling Research Laboratory, Korea Institute of Energy Research) ;
  • KIM, JIN-GUL (Department of Nano Chemical Engineering, Soonchunhyang University)
  • 투고 : 2020.09.18
  • 심사 : 2020.10.30
  • 발행 : 2020.10.30

초록

The kinetics of direct methanation over activated charcoal-supported molybdenum catalyst at 30 bar was studied in a cylindrical fixed-bed reactor. When the temperature was not higher than 400℃, the CO conversion increased with increasing temperature according to the Arrhenius law of reaction kinetics. While XRD and Raman analysis showed that Mo was present as Mo oxides after reduction or methanation, TEM and XPS analysis showed that Mo2C was formed after methanation depending on the loading of Mo precursor. When the temperature was as high as 500℃, the CO conversion was dependent not only on the Arrhenius law but also on the catalyzed reaction by nanoparticles, which came off from the reactor and thermocouple by metal dusting. These nanoparticles were made of Ni, Fe, Cr and alloy, and attributed to the formation of carbon deposit on the wall of the reactor and on the surface of the thermocouple. The carbon deposit consisted of amorphous and disordered carbon filaments.

키워드

참고문헌

  1. J. Kopyscinski, T. J. Schildhauer, and S. M. A. Biollaz, "Production of synthetic natural gas (SNG) from coal and dry biomass - a technology review from 1950 to 2009", Fuel, Vol. 89, No. 8, 2010, pp. 1763-1783, doi: https://doi.org/10.1016/j.fuel.2010.01.027.
  2. S. H. Kim and D. J Koh, "SNG manufacturing technology", NICE, Vol. 31, No. 1, 2013, pp. 65-68. Retrieved from https://www.cheric.org/PDF/NICE/NI31/NI31-1-0065.pdf.
  3. S. S. Kim, D. H. Shin, and J. G. Kim, "Direct methanation catalyst for synthetic gas and method for preparing same", EU Patent, EP 2792409 A1, 2020. Retrieved from https://patents.google.com/patent/EP2792409A1/en.
  4. M. Y. Kim, S. B. Ha, D. J. Koh, C. Byun, and E. D. Park, "CO methanation over supported Mo catalysts in the presence of $H_2S$", Catalyst Communications, Vol. 35, 2013, pp. 68-71, doi: https://doi.org/10.1016/j.catcom.2013.02.004.
  5. J. M. Choi, S. H. Kim, S. J. Lee, and S. S. Kim, "Effects of pressure and temperature in hydrothermal preparation of $MoS_2$ catalyst for methanation reaction", Catal. Lett., Vol. 148, 2018, pp. 1803-1814, doi: https://doi.org/10.1007/s10562-018-2372-x.
  6. J. M. Kim, S. H. Kim, S. Y. Park, S. S. Kim, and S. J. Lee, "Effects of preparation conditions on the CO methanation performance of Co-Mo carbide catalysts", Chem. Eng. Sci., Vol. 209, 2019, pp. 115219, doi: https://doi.org/10.1016/j.ces.2019.115219.
  7. F. Wang, J. C. Zhang, Z. Q. Chen, J. D. Lin, W. Z. Li, Y. Wang, and B. H. Chen, "Water-saving dry methanation for direct conversion of syngas to synthetic natural gas over robust $Ni_{0.1}Mg_{0.9}Al_2O_4$ catalyst", J. Catal., Vol. 375, 2019, pp. 466-477, doi: https://doi.org/10.1016/j.jcat.2019.06.021.
  8. F. Wang, J. C. Zhang, W. Z. Li, and B. H. Chen, "Coke-resistant Au-Ni/$MgAl_2O_4$ catalyst for direct methanation of syngas", J. Energy Chem., Vol. 39, 2019, pp. 198-207, doi: https://doi.org/10.1016/j.jechem.2019.03.028.
  9. C. K. Poh, S. W. D. Ong, Y. H. Du, H. Kamata, K. S. C. Choong, J. Chang, Y. Izumi, K. Nariai, N. Mizukami, L. W. Chen, and A. Borgana, "Direct methanation with supported $MoS_2$ nano-flakes: relationship between structure and activity", Catal. Today, Vol. 342, 2020, pp. 21-31, doi: https://doi.org/10.1016/j.cattod.2019.04.050.
  10. P. I. Ravikovitch and A. V. Neimark, "Characterization of nanoporous materials from adsorption and desorption isotherms", Colloid. Surface. A., Vol. 187-188, 2001, pp. 11-21, doi: https://doi.org/10.1016/s0927-7757(01)00614-8.
  11. J. G. Choi and L. T. Thompson, "XPS study of as-prepared and reduced molybdenum oxides", Appl. Surf. Sci., Vol. 93, No. 2, 1996, pp. 143-149, doi: https://doi.org/10.1016/0169-4332(95)00317-7.
  12. R. Guil-Lopez, E. Nieto, J. A. Botas, and J. L. G. Fierro, "On the genesis of molybdenum carbide phases during reductioncarburization reactions", J. Solid State Chem., Vol. 190, 2012, pp. 285-295, doi: https://doi.org/10.1016/j.jssc.2012.02.021.
  13. J. Zou, M. Xiang, B. Hou, D. Wu, and Y. Sun, "Single-step thermal carburization synthesis of supported molybdenum carbides from molybdenum-containing methyl-silica", J. Nat. Gas Chem., Vol. 20, No. 3, 2011, pp. 271-280, doi: https://doi.org/10.1016/s1003-9953(10)60178-8.
  14. M. Xiang, D. Wu, J. Zou, D. Li, Y. Sun, and X. She, "Catalytic performance of fe modified K/Mo2C catalyst for CO hydrogenation", J. Nat. Gas Chem., Vol. 20, No. 5, 2011, pp. 520-524, doi: https://doi.org/10.1016/s1003-9953(10)60215-0.
  15. M. Xiang, D. Li, J. Zou, W. Li, Y. Sun, and X. She, "XPS study of potassium-promoted molybdenum carbides for mixed alcohols synthesis via CO hydrogenation", J. Nat. Gas Chem., Vol. 19, No. 2, 2010, pp. 151-155, doi: https://doi.org/10.1016/s1003-9953(09)60051-7.
  16. W. F. McClune, "Powder diffraction file", International Centre for Diffraction Data, Newtown Square, USA, 1983.
  17. Y. Xu, X. Bao, and L. Lin, "Direct conversion of methane under nonoxidative conditions", J. Catal., Vol. 216, No. 1-2, 2003, pp. 386-395, doi: https://doi.org/10.1016/s0021-9517(02)00124-0.
  18. G. W. Han, D. Feng, and B. Deng, "Metal dusting and coking of alloy 803", Corros. Sci., Vol. 46, No. 2, 2004, pp. 443-452, doi: https://doi.org/10.1016/s0010-938x(03)00147-1.
  19. C. Y. Lin and W. T. Tsai, "Nano-sized carbon filament formation during metal dusting of stainless steel", Mater. Chem. Phys., Vol. 82, No. 3, 2003, pp. 929-936, doi: https://doi.org/10.1016/j.matchemphys.2003.08.019.
  20. H. Ghorbani, A. M. Rashidi, S. Rastegari, S. Mirdamadi, and M. Alaei, "Mass production of multi-wall carbon nanotubes by metal dusting process with high yield", Mater. Res. Bull., Vol. 46, No. 5, 2011, pp. 716-721, doi: https://doi.org/10.1016/j.materresbull.2011.01.021.
  21. P. V. D. S. Gunawardana, J. Walmsley, A. Holmen, D. Chen, and H. J. Venvik, "Metal dusting corrosion initiation in conversion of natural gas to synthesis gas", Energy Procedia, Vol. 26, 2012, pp. 125-134, doi: https://doi.org/10.1016/j.egypro.2012.06.018.
  22. C. M. Chun, G. Bhargava, and T. A. Ramanarayanan, "Metal dusting corrosion of nickel-based alloys", J. Electrochem. Soc., Vol. 154, No. 5, 2007, pp. C231-C240, doi: https://doi.org/10.1149/1.2710215.
  23. H. J. Grabke, "Metal dusting", Materials and Corrosion, Vol. 54, No. 10, 2003, pp. 736-746, doi: https://doi.org/10.1002/maco.200303729.
  24. Z. Zeng and K. Natesan, "Relationship of carbon crystallization to the metal-dusting mechanism of nickel", Chem. Mater., Vol. 15, No. 4, 2003, pp. 872-878, doi: https://doi.org/10.1021/cm020807l.
  25. J. Z. Albertsen, O. Grong, J. C. Walmsley, R. H. Mathiesen, and W. V. Beek, "A model for high-temperature pitting corrosion in nickel-based alloys involving internal precipitation of carbides, oxides, and graphite", Metall. Mater. Trans. A, Vol. 39, 2008, pp. 1258-1276, doi: https://doi.org/10.1007/s11661-008-9494-5.
  26. F. R. Feret, "Determination of the crystallinity of calcined and graphitic cokes by X-ray dffraction", Analyst, Vol. 123, 1998, pp. 595-600, doi: https://doi.org/10.1039/a707845e.
  27. G. G Tibbetts, "Carbon filaments and nanotubes : common origins, differing applications?", NATO Science Series, Series E, 2000, pp. 63-73, doi: https://doi.org/10.1007/978-94-010-0777-1.
  28. P. Morgan, "Carbon fibers and their composites" Taylor & Francis, 2005, pp. 325-346, doi: https://doi.org/10.1201/9781420028744.
  29. R. T. Yang and J. P. Chen, "Mechanism of carbon filament growth on metal catalysts", J. Catal., Vol. 115, No. 1, 1989, pp. 52-64, doi: https://doi.org/10.1016/0021-9517(89)90006-7.