DOI QR코드

DOI QR Code

인공지능 기반 질소산화물 배출량 예측을 위한 연구모형 개발

Development of Prediction Model for Nitrogen Oxides Emission Using Artificial Intelligence

  • 조하늬 (포항공과대학교 화학공학과) ;
  • 박지수 (포항공과대학교 화학공학과) ;
  • 윤용주 (포항공과대학교 화학공학과)
  • Jo, Ha-Nui (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Park, Jisu (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Yun, Yongju (Department of Chemical Engineering, Pohang University of Science and Technology)
  • 투고 : 2020.04.29
  • 심사 : 2020.06.11
  • 발행 : 2020.11.01

초록

지속적으로 강화되는 환경오염 물질 배출 규제로 인해, 질소 산화물(NOx)의 배출량 예측 및 관리는 산업 현장에서 많은 관심을 받고 있다. 본 연구에서는 인공지능 기반 질소산화물 배출량 예측모델 개발을 위한 연구모형을 제안하였다. 제안된 연구모형은 데이터의 전처리 과정부터 인공지능 모델의 학습 및 평가까지 모두 포함하고 있으며, 시계열 특성을 가지는 NOx 배출량을 예측하기 위하여 순환 신경망 중 하나인 Long Short-Term Memory (LSTM) 모델을 활용하였다. 또한 의사결정나무 기법을 활용하여 LSTM의 time window를 모델 학습 이전에 선정하는 방법을 채택하였다. 본 연구에서 제안된 연구모형의 NOx 배출량 예측 모델은 가열로에서 확보한 조업 데이터로 학습되었으며, 최적 모델은 hyper-parameter를 조절하여 개발되었다. 개발된 LSTM 모델은 학습 데이터 및 평가 데이터에 대하여 모두 93% 이상의 NOx 배출량 예측 정확도를 나타내었다. 본 연구에 제안된 연구모형은 시계열 특성을 가지는 다양한 대기오염 물질의 배출량 예측모델 개발에 응용될 수 있을 것으로 기대된다.

Prediction and control of nitrogen oxides (NOx) emission is of great interest in industry due to stricter environmental regulations. Herein, we propose an artificial intelligence (AI)-based framework for prediction of NOx emission. The framework includes pre-processing of data for training of neural networks and evaluation of the AI-based models. In this work, Long-Short-Term Memory (LSTM), one of the recurrent neural networks, was adopted to reflect the time series characteristics of NOx emissions. A decision tree was used to determine a time window of LSTM prior to training of the network. The neural network was trained with operational data from a heating furnace. The optimal model was obtained by optimizing hyper-parameters. The LSTM model provided a reliable prediction of NOx emission for both training and test data, showing an accuracy of 93% or more. The application of the proposed AI-based framework will provide new opportunities for predicting the emission of various air pollutants with time series characteristics.

키워드

참고문헌

  1. Studzinski, W., Liiva, P., Choate, P. and Acker, W., "A Computational and Experimental Study of Combustion Chamber Deposit Effects on $NO_x$ Emissions," SAE Tech. Pap., 932815(1993).
  2. Lee, H., "Status and Improvement Measures for Total Air Pollution Load Management," National Assembly Research Service, 36(2019).
  3. Karim, Z. A. A., Khan, M. Y., Rashid, A., Aziz, A. and Hagos, F. Y., "Attaining Simultaneous Reduction in Nox and Smoke by Using Water-in-biodiesel Emulsion Fuels For Diesel Engine," Platform : A Journal of Engineering, 3, 1-21(2019).
  4. Xu, M., Azevedo, J. L. T. and Carvalho, M. G., "Modelling of the Combustion Process and $NO_x$ Emission in a Utility Boiler," Fuel, 79, 1611-1619(2000). https://doi.org/10.1016/S0016-2361(00)00019-3
  5. Khoshhal, A., Rahimi, M. and Alsairafi, A. A., "CFD Study on Influence of Fuel Temperature on $NO_x$ Emission in a HiTAC Furnace," Int. Commun. Heat Mass Transfer, 38, 1421-1427(2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.08.008
  6. Ferretti, G. and Piroddi, L., "Estimation of $NO_x$ Emissions in Thermal Power Plants Using Neural Networks," J. Eng. Gas Turbines Power, 123, 465-471(2001). https://doi.org/10.1115/1.1367339
  7. Reinbacher, F. and Regele, J. D., "Influence of Smooth Temperature Variation on Hotspot Ignition," Combust. Theor. Model., 22, 110-130(2018). https://doi.org/10.1080/13647830.2017.1381347
  8. Joo, S., Yoon, J., Kim, J., Lee, M. and Yoon, Y., "$NO_x$ Emissions Characteristics of the Partially Premixed Combustion of $H_2/CO/CH_4$ https://doi.org/10.1016/j.applthermaleng.2015.01.057
  9. Park, C. and Kim, Y., "A Study on $NO_x$ Emission Control Methods in the Cement Firing Process Using Data Mining Techniques," J. Korean Soc. Qual. Manag., 46, 739-752(2018). https://doi.org/10.7469/JKSQM.2018.46.3.739
  10. Taghavifar, H., Taghavifar, H., Mardani, A. and Mohebbi, A., "Exhaust Emissions Prognostication for DI Diesel Group-hole Injectors Using a Supervised Artificial Neural Network Approach," Fuel, 125, 81-89(2014). https://doi.org/10.1016/j.fuel.2014.02.016
  11. Tabachnick, J., Fidell, B. G. and Ullman, L. S., Using Multivariate Statistics, Pearson Education, London (2007).
  12. Meyler, A., Kenny, G. and Quinn, T., "Forecasting Irish Inflation Using ARIMA Models," Munich Personal RePEc Archive, 11359 (1998).
  13. Khashei, M., Bijari, M. and Raissi Ardali, G. A., "Improvement of Auto-Regressive Integrated Moving Average models using Fuzzy logic and Artificial Neural Networks (ANNs)," Neurocomputing, 72(4-6), 956-967(2009). https://doi.org/10.1016/j.neucom.2008.04.017
  14. Zhang, G., Patuwo, B. E. and Hu, M. Y., "Forecasting with Artificial Neural Networks-the State of Art," Int. J. Forecast., 14(1), 35-62(1998). https://doi.org/10.1016/S0169-2070(97)00044-7
  15. Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., Jiang, L. and Cheng, Z., "Time-series Well Performance Prediction Based on Long Short-Term Memory (LSTM) Neural Network Model," J. Petrol. Sci. Eng., 186, 106682(2020). https://doi.org/10.1016/j.petrol.2019.106682
  16. Li, Y. and Cao, H., "Prediction for Tourism Flow based on LSTM Neural Network," Procedia Comput. Sci., 129, 277-283(2018). https://doi.org/10.1016/j.procs.2018.03.076
  17. Karakoyun, E. S. and Cibikdiken, A. O., "Comparison of ARIMA Time Series Model and LSTM Deep Learning Algorithm for Bitcoin Price Forecasting," Proceedings of the Multidisciplinary Academic Conference, 171-179(2018).
  18. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J. and Kolehmainen, M., "Methods for Imputation of Missing Values in Air Quality Data Sets," Atmos. Environ., 38, 2895-2907(2004). https://doi.org/10.1016/j.atmosenv.2004.02.026
  19. Sola, J. and Sevilla, J., "Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems," IEEE Trans. Nucl. Sci., 44, 1464-1468(1997). https://doi.org/10.1109/23.589532
  20. Benesty, J., Chen, J., Huang, Y. and Cohen, I., Noise Reduction in Speech Processing, Springer-Verlag Berlin Heidelberg(2009).
  21. Kuhn, M., "Building Predictive Models in R Using the Caret Package," J. Stat. Softw., 28, 1-26(2008). https://doi.org/10.18637/jss.v028.i05
  22. Kwon, S. H., Lee, J. and Chung, G., "Snow Damages Estimation using Artificial Neural Network and Multiple Regression Analysis," J. Korean Soc. Hazard Mitig., 17, 315-325(2017). https://doi.org/10.9798/KOSHAM.2017.17.2.315
  23. Dong, C., Jin, B. and Li, D., "Predicting the Heating Value of MSW with a Feed Forward Neural Network," Waste Manage., 23, 103-106(2003). https://doi.org/10.1016/S0956-053X(02)00162-9
  24. Taghavifar, H., Taghavifar, H., Mardani, A., Mohebbi, A., Khalilarya, S. and Jafarmadar, S., "Appraisal of Artificial Neural Networks to the Emission Analysis and Prediction of $CO_2$, soot, and $NO_x$ of n-heptane Fueled Engine," J. Cleaner Prod., 112, 1729-1739(2016). https://doi.org/10.1016/j.jclepro.2015.03.035
  25. Chattopadhyay, S., "Feed forward Artificial Neural Network model to predict the average summer-monsoon rainfall in India," Acta Geophys., 55, 369-382(2007). https://doi.org/10.2478/s11600-007-0020-8
  26. Connor, J. T., Martin, R. D. and Atlas, L. E., "Recurrent Neural Networks and Robust Time Series Prediction," IEEE Trans. Neural Networks, 5, 240-254(1994). https://doi.org/10.1109/72.279188
  27. Hochreiter, S., "Long Short-Term Memory," Neural Comput., 1780, 1735-1780(1997). https://doi.org/10.1162/neco.1997.9.8.1735
  28. Olah, C., "Understanding LSTM Networks," GITHUB blog (2015), Retrieved from http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
  29. Freeman, B. S., Taylor, G., Gharabaghi, B. and The, J., "Forecasting Air Quality Time Series Using Deep Learning," J. Air Waste Manage. Assoc., 68, 866-886(2018). https://doi.org/10.1080/10962247.2018.1459956
  30. Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K. and Soman, K. P., "Stock Price Prediction Using Lstm, Rnn and CNN-sliding Window Model," 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1643-1647(2017).
  31. Safavian, S. R. and Landgrebe, D., "A Survey of Decision Tree Classifier Methodology," IEEE Trans. Syst. Man. Cybern., 21, 660-674(1991). https://doi.org/10.1109/21.97458