DOI QR코드

DOI QR Code

안전을 고려한 상용 2,3-Butanediol 탈수반응 시스템 설계

Design of Commercial 2,3-Butanediol Dehydration Reaction System Considering Safety

  • 송대성 (한경대학교 사회안전시스템 공학부)
  • Song, Daesung (School of Social Safety System Engineering, Hankyong National University)
  • 투고 : 2020.03.24
  • 심사 : 2020.07.02
  • 발행 : 2020.11.01

초록

본 연구에서는 기존의 2,3-Butanediol (2,3-BDO) 탈수 반응시스템의 문제점을 해결하기 위해 새로운 반응 시스템이 제안되었다. 대기압 근처에서 2,3-BDO 반응물을 반응온도 360 ℃ 까지 올리기 위해서, 상용공정에서 일반적으로 사용되는 용광로를 사용하게 되면 반응 시스템이 적절히 작동할 수 없다는 것이 확인되었다. 그것은 2,3-BDO 올리고머로 고려되는 물질 때문이다. 그것은 용광로 튜브 안의 막힘, 폭발과 같은 안전 문제 뿐 아니라 반응 시스템의 유지보수의 어려운 문제점을 일으킬 수 있다. 그러한 문제점을 해결하기 위한 방법은 용광로를 대신해 감압운전 하에서 고압스팀을 사용하는 열교환기를 사용해서 반응물의 온도를 낮추고 반응 온도를 낮추는 것이다. 반응 속도론을 사용하여, 반응기의 성능이 감압운전과 더 낮은 온도, 330 ℃에서 크게 다르지 않다는 것을 보였다. 이 결과는 왜 새로운 반응 시스템이 제안되었는지를 설명한다.

In this study, a new reaction system is proposed to solve the problems of the existing 2,3-Butanediol (2,3-BDO) dehydration reaction system. It was confirmed that the reaction system did not wok as it should operate properly when using a furnace, which is commonly used in commercial processes, to raise the reactant, 2,3-BDO, to the reaction temperature, 360 ℃, at near atmoshperic pressure. It is because of the substance considered to be oligomers of 2,3-BDO. It can lead to safety problems, such as blockages inside the furnace's tube and explosions, as well as tricky maintenance issues in the reaction system. To solve it, the temperature of reactant can be brought down by using a heat exchanger with High Pressure (HP) steam instead of the furnace, which has a hot spot problem through the vacuum operation and reduce the reaction temperature. It can be seen that the reactor performance is almost similar under the vacuum operation and the lower reaction temperature, 330 ℃, by using a reaction kinetics. This result explains why the new reaction system is proposed.

키워드

참고문헌

  1. Bai, Y., Page, S. J., Zhang, J. and Zhao X., "Kinetic Modelling of Acid-catalyzed Liquid-phase Dehydration of bio-based 2,3-Butanediol Considering a Newly Identified by-product and An Updated Reaction Network," CHEM ENG J, 389, 124451-124456 (2020). https://doi.org/10.1016/j.cej.2020.124451
  2. Lee, S. Y., Kim, H. U., Chae, T. U., Cho, J. S., Shin, J. H., Kim, D. I., Ko, Y., Jang, W. D. and Jang, Y., "A Comprehensive Metabolic Map for Production of Bio-based Chemicals," Nat. Catal., 2, 18-33(2019). https://doi.org/10.1038/s41929-018-0212-4
  3. Sun D., Li Y., Yang C., Su, Y., Yamada, Y. and Sato, S. "Production of 1, 3-butadiene from Biomass-derived C4 Alcohols," Fuel Process. Technol., 197, 106193-106209(2020). https://doi.org/10.1016/j.fuproc.2019.106193
  4. Song D., "Kinetic Model Development for Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone over an Amorphous Calcium Phosphate Catalyst," Ind. Eng. Chem. Res., 55(45), 11664-11671(2016). https://doi.org/10.1021/acs.iecr.6b02930
  5. Song D., "Development of a Deactivation Model for the Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone over an Amorphous Calcium Phosphate Catalyst", Ind. Eng. Chem. Res., 56(39), 11013-11020(2017). https://doi.org/10.1021/acs.iecr.7b02355
  6. Song D., "Modeling of a Pilot-Scale Fixed-Bed Reactor for Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone," Catalysts, 8(2), 1-13(2018).
  7. Song, D., Yoon, Y. G. and Lee, C. J., "Techno-economic Evaluation of the 2,3-butanediol Dehydration Process Using a Hydroxyapatite-alumina Catalyst", Korean J. Chem. Eng., 35(12), 2348-2354 (2018). https://doi.org/10.1007/s11814-018-0161-2
  8. Song, D., Yoon, Y. G., Seo, S. K. and Lee, C. J., "Improvement of 1,3-Butadiene Separation in 2,3-Butanediol Dehydration Using Extractive Distillation," Processes, 7(7), 1-11(2019).
  9. Lee, K. O., Park, J. Y., and Lee, C. J., "Evaluation of a Mitigation System for Leakage Accidents Using Mathematical Modeling," Korean Chem. Eng. Res., 35(2), 348-354(2018). https://doi.org/10.1007/s11814-017-0288-6
  10. You, C. and Kim, J, "HAZOP Study for Risk Assessment and Safety Improvement Strategies of $CO_2$ Separation Process," Korean Chem. Eng. Res., 56(3), 335-342(2018). https://doi.org/10.9713/KCER.2018.56.3.335