DOI QR코드

DOI QR Code

Synthesis of Ceramide Nanoemulsion by High-Pressure Homogenizer and Evaluation of Its Stability

고압 균질기를 이용한 세라마이드가 함유된 나노에멀젼 제조 및 안정성 평가

  • Hidajat, Marcel Jonathan (Research and Development Department, Hiflux Co. Ltd.) ;
  • Noh, Jongho (Research and Development Department, Ilshin Autoclave Co. Ltd.) ;
  • Park, Jongbeom (Research and Development Department, Ilshin Autoclave Co. Ltd.) ;
  • Hong, Jaehwa (Department of Skincare Research Center, Kolmar Korea Co. Ltd.) ;
  • Kim, Hyeonhyo (Research and Development Department, Ilshin Autoclave Co. Ltd.) ;
  • Jo, Wantaek (Research and Development Department, Ilshin Autoclave Co. Ltd.)
  • 마르셀 죠나단 히다잣 ((주)하이플럭스 기술연구소) ;
  • 노종호 ((주)일신오토클레이브 기업부설연구소) ;
  • 박종범 ((주)일신오토클레이브 기업부설연구소) ;
  • 홍재화 ((주)한국콜마 스킨케어연구소) ;
  • 김현효 ((주)일신오토클레이브 기업부설연구소) ;
  • 조완택 ((주)일신오토클레이브 기업부설연구소)
  • Received : 2020.03.30
  • Accepted : 2020.07.14
  • Published : 2020.11.01

Abstract

A ceramide-containing nanoemulsion was synthesized by using a High-Pressure Homogenizer (HPH) to observe its changes in properties and long-term stability. The droplet size, droplet distribution and zeta potential of nanoemulsion were examined by varying the pressure and the number of passes of the HPH. The increase in HPH pressure and number of passes decreased the average droplet size and made the nanoemulsion more uniform. However, beyond certain operating condition, the recombination between the droplets was confirmed due to droplet surface energy and emulsifier. This study also shows that the decrease in droplet size increased the nanoemulsion viscosity although only minimal changes occurred in the zeta potential. The formed nanoemulsion was then tested for its stability by storing it at 25 and 45 ℃ for 28 days. During the first week, the average droplet size increased due to recombination and then subsequently remained constant. We confirmed that ceramide nanoemulsion for industrial application could be synthesized by using HPH.

본 연구에서는 고압 균질기를 이용해 세라마이드가 포함된 나노에멀젼을 제조하고 물성변화 및 장기 안정성을 알아 보았다. 고압 균질기 압력 및 통과 횟수를 변화 시켜 제조된 나노에멀젼의 평균입자, 입도분포, 제타전위 그리고 점도를 측정하였다. 고압 균질기 압력이 높고 통과 횟수가 많을수록 평균입자는 작아지고 입도 분포는 조밀하였지만 일정 조건이상에서는 표면에너지 및 계면활성제의 영향으로 입자간 재결합이 확인되었다. 평균입자가 작을수록 점도 값은 높았지만 제타전위 값에는 큰 차이가 없었다. 제조된 나노에멀젼을 25 ℃와 45 ℃로 유지시키며 안정성을 측정한 결과, 초기(7일 이후)에 재결합 현상으로 평균입자가 커진 후 유지되었지만 제조된 나노에멀젼의 안정성에는 큰 변화가 없었다. 이를 통해 고압 균질기를 이용해 세라마이드가 포함된 안정적인 나노에멀젼의 제조가 가능함을 확인하였다.

Keywords

References

  1. Park, B. D., Uhm, J. G., Lee, M. J. and Kim, Y., "The Preparation of Multi-lamellar Emulsion which Containing Pseudoceramide( PC-9)," J. Soc. Cosmet. Sci. Korea, 25(1), 55-68(1999).
  2. Hatziantoniou, S., Deli, G., Nikas, Y., Demetzos, C. and Papaioannou, G. T., "Scanning Electron Microscopy Study on Nanoemulsions and Solid Lipid Nanoparticles Containing High Amounts of Ceramides," Micron, 38(8), 819-823(2007). https://doi.org/10.1016/j.micron.2007.06.010
  3. Su, R., Yang, L., Wang, Y., Yu, S., Guo, Y., Deng, J., Zhao, Q. and Jin, X., "Formulation, Development, and Optimization of a Novel Octyldodecanol-based Nanoemulsion for Transdermal Delivery of Ceramide IIIB," Int. J. Nanomed., 12, 5203-5221(2017). https://doi.org/10.2147/IJN.S139975
  4. Yilmaz, E. and Borchert, H.-H., "Effect of Lipid-containing, Positively Charged Nanoemulsions on Skin Hydration, Elasticity and Erythema-An in vivo Study," Int. J. Pharm., 307(2), 232-238(2006). https://doi.org/10.1016/j.ijpharm.2005.10.002
  5. Cho, W. G., Kim, K. A., Jang, S. I. and Cho, B. O., "Behaviour of Nanoemulsions Containing Ceramide IIIB and Stratum Corneum Lipids," J. Soc. Cosmet. Sci. Korea, 44(1), 31-37(2018). https://doi.org/10.15230/SCSK.2018.44.1.31
  6. Elias, P. M., "Epidermal Lipids, Membranes, and Keratinization," Int. J. Dermatol., 20(1), 1-19(1981). https://doi.org/10.1111/j.1365-4362.1981.tb05278.x
  7. Sekiguchi, A., Yamauchi, H., Manosroi, A., Manosroi, J. and Abe, M., "Molecular Interactions Between Phospholipids and Glycolipids in a Lipid Bilayer," Colloids Surf., B, 4(5), 287-296(1995). https://doi.org/10.1016/0927-7765(94)01180-D
  8. Golemanov, K., Tcholakova, S., Denkov, N. D. and Gurkov, T., "Selection of Surfactants for Stable Paraffin-in-water Dispersions, Undergoing Solid-liquid Transition of the Dispersed Particles," Langmuir, 22(8), 3560-3569(2006). https://doi.org/10.1021/la053059y
  9. Sonneville-Aubrun, O., Simonnet, J. T. and L'Alloret, F., "Nanoemulsions: a New Vehicle for Skincare Products," Adv. Colloid Interface Sci., 108-109, 145-149(2004). https://doi.org/10.1016/j.cis.2003.10.026
  10. Sonneville-Aubrun, O., Yukuyama, M. N. and Pizzino, A. In S. M. Jafari, and D. J. McClements (Ed.), Nanoemulsions, London, UK. 435-475(2018).
  11. Gupta, A., Eral, H. B., Hatton, T. A. and Doyle, P. S., "Nanoemulsions: Formation, Properties and Applications," Soft Matter, 12(11), 2826-2841(2016). https://doi.org/10.1039/C5SM02958A
  12. Morales, D., Gutierrez, J. M., García-Celma, M. J. and Solans, Y. C., "A Study of the Relation Between Bicontinuous Microemulsions and Oil/water Nano-emulsion Formation," Langmuir, 19(18), 7196-7200(2003). https://doi.org/10.1021/la0300737
  13. Izquierdo, P., Esquena, J., Tadros, T. F., Dederen, J. C., Feng, J., Garcia-Celma, M. J., Azemar, N. and Solans, C., "Phase behavior and Nano-emulsion Formation by the Phase Inversion Temperature Method," Langmuir, 20(16), 6594-6598(2004). https://doi.org/10.1021/la049566h
  14. Kwon, S. S., Kong, B. J., Cho, W. G. and Park, S. N., "Formation of Stable Hydrocarbon Oil-in-water Nanoemulsions by Phase Inversion Composition Method at Elevated Temperature," Korean J. Chem. Eng., 32(3), 540-546(2015). https://doi.org/10.1007/s11814-014-0234-9
  15. Forgiarini, A., Esquena, J., Gonzalez, C. and Solans, C., "Formation of Nano-emulsions by Low-energy Emulsification Methods at Constant Temperature," Langmuir, 17(7), 2076-2083(2001). https://doi.org/10.1021/la001362n
  16. Sonneville-Aubrun, O., Babayan, D., Bordeaux, D., Lindner, P., Rata, G. and Cabane, B., "Phase Transition Pathways for the Production of 100 nm Oil-in-water Emulsions," Phys. Chem. Chem. Phys., 11(1), 101-110(2009). https://doi.org/10.1039/B813502A
  17. Delmas, T., Piraux, H., Couffin, A.-C., Texier, I., Vinet, F., Poulin, P., Cates, M. E. and Bibette, J., "How to Prepare and Stabilize Very Small Nanoemulsions," Langmuir, 27(5), 1683-1692(2011). https://doi.org/10.1021/la104221q
  18. You, K. M., Jang, H. H., Lee, E. S., Park, J. T. and Hong, S. T., "Study of Stability and Shelf-life of Red Ginseng Beverage Emulsified by Homogenizer High Pressure," Journal of Oil & Applied Science, 35(1), 70-79(2018). https://doi.org/10.12925/JKOCS.2018.35.1.70
  19. Jo, Y. J., Lee, S. B., Lee, J. K. and Kwon, Y. J., "Preparation of Nanoemulsions Containing Curcumin by High Pressure Homogenization," Food Eng. Prog., 18(4), 341-347(2014). https://doi.org/10.13050/foodengprog.2014.18.4.341
  20. Cho, J. H., Kim, T. Y., Yun, H. Y. and Kim, H. H., "Facile Depolymerization Process of ${\beta}$-glucan Through the Use of a High Pressure Homogenizer," Am. J. Res. Commun., 2(4), 168-178(2014).
  21. Traul, K. A., Driedger, A., Ingle, D. L. and Nakhasi, D., "Review of the Toxicologic Properties of Medium-chain Triglycerides," Food Chem. Toxicol., 38(1), 79-98(2000). https://doi.org/10.1016/S0278-6915(99)00106-4
  22. Jafari, S. M., Assadpoor, E., He, Y. and Bhandari, B., "Re-coalescence of Emulsion Droplets During High-energy Emulsification," Food Hydrocolloids, 22(7), 1191-1202(2008). https://doi.org/10.1016/j.foodhyd.2007.09.006
  23. Stickel, J. J. and Powell, R. L., "Fluid Mechanics and Rheology of Dense Suspensions," Annu. Rev. Fluid Mech., 37(1), 129-149 (2005). https://doi.org/10.1146/annurev.fluid.36.050802.122132
  24. Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S. and Angue Mintsa, H., "Temperature and Particle-size Dependent Viscosity Data for Water-based Nanofluids - Hysteresis Phenomenon," Int. J. Heat Fluid Flow, 28(6), 1492-1506(2007). https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004
  25. Jia-Fei, Z., Zhong-Yang, L., Ming-Jiang, N. and Ke-Fa, C., "Dependence of Nanofluid Viscosity on Particle Size and pH value," Chin. Phys. Lett., 26(6), 066202(2009). https://doi.org/10.1088/0256-307X/26/6/066202
  26. Ee, S. L., Duan, X., Liew, J. and Nguyen, Q. D., "Droplet size and Stability of Nano-emulsions Produced by the Temperature Phase Inversion Method," Chem. Eng. J., 140(1), 626-631(2008). https://doi.org/10.1016/j.cej.2007.12.016
  27. Solans, C., Izquierdo, P., Nolla, J., Azemar, N. and Garcia-Celma, M. J., "Nano-emulsions," Curr. Opin. Colloid Interface Sci., 10(3), 102-110(2005). https://doi.org/10.1016/j.cocis.2005.06.004