References
- Khodadadi, A., Faghih-Mirzaei, E., Karimi-Maleh, H., Abbaspourrad, A., Agarwal, S. and Gupta, V. K., "A New Epirubicin Biosensor Based on Amplifying DNA Interactions with Polypyrrole and Nitrogen-doped Reduced Graphene: Experimental and Docking Theoretical Investigations," Sens. Actuators B Chem., 284, 568-574(2019). https://doi.org/10.1016/j.snb.2018.12.164
- Mollarasouli, F., Asadpour-Zeynali, K., Campuzano, S., Yanez-Sedeno, P. and Pingarron, J. M., "Non-enzymatic Hydrogen Peroxide Sensor Based on Graphene Quantum Dots-chitosan/methylene Blue Hybrid Nanostructures," Electrochim. Acta, 246, 303-314(2017). https://doi.org/10.1016/j.electacta.2017.06.003
- Asadian, E., Ghalkhani, M., and Shahrokhian, S., "Electrochemical Sensing Based on Carbon Nanoparticles: A Review," Sens. Actuators B Chem., 293, 183-209(2019). https://doi.org/10.1016/j.snb.2019.04.075
- Campuzano, S., Yanez-Sedeno, P. and Pingarron, J. M., "Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing," Nanomaterials, 9, 634(2019). https://doi.org/10.3390/nano9040634
- Cayuela, A., Soriano, M. L., Carrillo-Carrion, C., Valcarcel, M., "Semiconductor and Carbon-based Fluorescent Nanodots: the Need for Consistency," Chem. Commun., 52, 1311-1326(2016). https://doi.org/10.1039/C5CC07754K
- Sciortino, A., Cannizzo, A. and Messina, F., "Carbon Nanodots: A Review-From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response," C, 4, 67(2018). https://doi.org/10.3390/c4040067
- Zheng, X. T., Ananthanarayanan, A., Luo, K. Q. and Chen, P., "Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications," Small, 11, 1620-1636(2015). https://doi.org/10.1002/smll.201402648
- Le, T. H., Lee, D. H., Kim, J. H., Park, S. J., "Synthesis of Enhanced Fluorescent Graphene Quantum Dots for Catecholamine Neurotransmitter Sensing," Korean J. Chem. Eng., 37, 1000-1007(2020). https://doi.org/10.1007/s11814-020-0507-4
- Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., et al., "Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments," J. Am. Chem. Soc., 126, 12736-12737(2004). https://doi.org/10.1021/ja040082h
- Xie, R., Wang, Z., Zhou, W., Liu, Y., Fan, L. and Li, Y., "Graphene Quantum Dots as Smart Probes for Biosensing," Anal. Methods, 8, 4001-4016(2016). https://doi.org/10.1039/C6AY00289G
- Pan, D., Zhang, J., Li, Z. and Wu, M., "Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots," Adv. Mater., 22, 734-738(2010). https://doi.org/10.1002/adma.200902825
- Li, H., He, X., Kang, Z., Huang, H., Liu, Y. and Liu, J., "Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design," Angew. Chem. Int. Ed, 49, 4430-4434(2010). https://doi.org/10.1002/anie.200906154
- Peng, J., Gao, W., Gupta, B. K., Liu, Z., Romero-Aburto, R. and Ge, L., "Graphene Quantum Dots Derived from Carbon Fibers," Nano Lett., 12, 844-849(2012). https://doi.org/10.1021/nl2038979
- Zhuo, S., Shao, M. and Lee, S.-T., "Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis," ACS Nano, 6, 1059-1064(2012). https://doi.org/10.1021/nn2040395
- Li, L.-L., Ji, J., Fei, R., Wang, C.-Z., Lu, Q. and Zhang, J.-R., "A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots," Adv. Funct. Mater., 22, 2971-2979(2012). https://doi.org/10.1002/adfm.201200166
- Liu, F., Jang, M.-H., Ha, H. D., Kim, J.-H., Cho, Y.-H., Seo, T. S., "Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence," Adv. Mater., 25, 3657-3662(2013). https://doi.org/10.1002/adma.201300233
- Dong, Y., Shao, J., Chen, C., Li, H., Wang, R. and Chi, Y., "Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid," Carbon, 50, 4738-4743(2012). https://doi.org/10.1016/j.carbon.2012.06.002
- Tao, S., Song, Y., Zhu, S., Shao, J., Yang, B., "A New Type of Polymer Carbon Dots with High Quantum Yield: From Synthesis to Investigation on Fluorescence Mechanism," Polymer, 116, 472-478(2017). https://doi.org/10.1016/j.polymer.2017.02.039
- Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X. and Luo, Y., "Hydrothermal Treatment of Grass: A Low-Cost, Green Route to Nitrogen-Doped, Carbon-Rich, Photoluminescent Polymer Nanodots as an Effective Fluorescent Sensing Platform for Label-Free Detection of Cu(II) Ions," Adv. Mater., 24, 2037-2041(2012). https://doi.org/10.1002/adma.201200164
- Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X., "Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots," ACS Nano, 6, 5102-5110(2012). https://doi.org/10.1021/nn300760g
- Sagbas, S. and Sahiner, N., in A. Khan, M. Jawaid, Inamuddin, A. M. Asiri (Eds.), Nanocarbon and its Composites, Woodhead Publishing, 651-676(2019).
- De, B. and Karak, N., "Recent Progress in Carbon Dot-metal Based Nanohybrids for Photochemical and Electrochemical Applications," J. Mater. Chem. A, 5, 1826-1859(2017). https://doi.org/10.1039/C6TA10220D
- Tian, P., Tang, L., Teng, K. S. and Lau, S. P., "Graphene Quantum Dots from Chemistry to Applications," Mater. Today Chem., 10, 221-258(2018). https://doi.org/10.1016/j.mtchem.2018.09.007
- Han, M., Zhu, S., Lu, S., Song, Y., Feng, T. and Tao, S., "Recent Progress on the Photocatalysis of Carbon Dots: Classification, Mechanism and Applications," Nano Today, 19, 201-218(2018). https://doi.org/10.1016/j.nantod.2018.02.008
- Guo, X., Zhang, H., Sun, H., Tade, M. O. and Wang, S., "Green Synthesis of Carbon Quantum Dots for Sensitized Solar Cells," ChemPhotoChem, 1, 116-119(2017). https://doi.org/10.1002/cptc.201600038
- Hu, C., Li, M., Qiu, J. and Sun, Y.-P., "Design and Fabrication of Carbon Dots for Energy Conversion and Storage," Chem. Soc. Rev., 48, 2315-2337(2019). https://doi.org/10.1039/C8CS00750K
- Kasouni, A., Chatzimitakos, T. and Stalikas, C., "Bioimaging Applications of Carbon Nanodots: A Review," C, 5, 19(2019).
-
Li, Y., Zhong, Y., Zhang, Y., Weng, W. and Li, S., "Carbon Quantum Dots/octahedral
$Cu_2O$ Nanocomposites for Non-enzymatic Glucose and Hydrogen Peroxide Amperometric Sensor," Sens. Actuators B Chem., 206, 735-743(2015). https://doi.org/10.1016/j.snb.2014.09.016 - Cho, M.-J. and Park, S.-Y., "Carbon-dot-based Ratiometric Fluorescence Glucose Biosensor," Sens. Actuators B Chem., 282, 719-729(2019). https://doi.org/10.1016/j.snb.2018.11.055
- Kim, J., Park, J., Kim, H., Singha, K. and Kim, W. J., "Transfection and Intracellular Trafficking Properties of Carbon Dot-gold Nanoparticle Molecular Assembly Conjugated with PEI-pDNA," Biomaterials, 34, 7168-7180(2013). https://doi.org/10.1016/j.biomaterials.2013.05.072
- Sun, H., Wu, L., Wei, W. and Qu, X., "Recent Advances in Graphene Quantum Dots for Sensing," Mater. Today, 16, 433-442 (2013). https://doi.org/10.1016/j.mattod.2013.10.020
- Tuteja, S. K., Chen, R., Kukkar, M., Song, C. K., Mutreja, R. and Singh, S., "A Label-free Electrochemical Immunosensor for the Detection of Cardiac Marker Using Graphene Quantum Dots (GQDs)," Biosens. Bioelectron., 86, 548-556(2016). https://doi.org/10.1016/j.bios.2016.07.052
- Xu, G., Han, J., Ding, B., Nie, P., Pan, J., Dou, H., "Biomass-derived Porous Carbon Materials with Sulfur and Nitrogen Dual-doping for Energy Storage," Green Chem., 17, 1668-1674 (2015). https://doi.org/10.1039/C4GC02185A
- Guo, Q., Zhang, M., Zhou, G., Zhu, L., Feng, Y. and Wang, H., "Highly Sensitive Simultaneous Electrochemical Detection of Hydroquinone and Catechol with Three-dimensional N-doping Carbon Nanotube Film Electrode," J. ElectroAnal. Chem., 760, 15-23(2016). https://doi.org/10.1016/j.jelechem.2015.11.034
- Zhang, L., Han, Y., Zhu, J., Zhai, Y. and Dong, S., "Simple and Sensitive Fluorescent and Electrochemical Trinitrotoluene Sensors Based on Aqueous Carbon Dots," Anal. Chem., 87, 2033-2036(2015). https://doi.org/10.1021/ac5043686
- Jiang, Y., Wang, B., Meng, F., Cheng, Y. and Zhu, C., "Microwave-assisted Preparation of N-doped Carbon Dots as a Biosensor for Electrochemical Dopamine Detection," J. Colloid Interface Sci., 452, 199-202(2015). https://doi.org/10.1016/j.jcis.2015.04.016
- Fu, L., Wang, A., Lai, G., Lin, C.-T., Yu, J. and Yu, A., "A Glassy Carbon Electrode Modified with N-doped Carbon Dots for Improved Detection of Hydrogen Peroxide and Paracetamol," Microchim. Acta, 185, 87(2018). https://doi.org/10.1007/s00604-017-2646-9
- Liu, L., Anwar, S., Ding, H., Xu, M., Yin, Q. and Xiao, Y., "Electrochemical Sensor Based on F,N-doped Carbon Dots Decorated Laccase for Detection of Catechol," J. ElectroAnal. Chem., 840, 84-92(2019). https://doi.org/10.1016/j.jelechem.2019.03.071
- Zhou, M., Guo, J., Guo, L.-P. and Bai, J., "Electrochemical Sensing Platform Based on the Highly Ordered Mesoporous Carbon-Fullerene System," Anal. Chem., 80, 4642-4650(2008). https://doi.org/10.1021/ac702496k
- Banks, C. E., Davies, T. J. Wildgoose, G. G. and Compton, R. G., "Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge-plane Sites and Tube Ends are the Reactive Sites," Chem. Commun., 37(7), 829-841(2005).
- Hu, S., Huang, Q., Lin, Y., Wei, C., Zhang, H. and Zhang, W., "Reduced Graphene Oxide-carbon Dots Composite as An Enhanced Material for Electrochemical Determination of Dopamine," Electrochim. Acta, 130, 805-809(2014). https://doi.org/10.1016/j.electacta.2014.02.150
-
Ngo, Y.-L.T. and Hur, S. H., "Low-temperature
$NO_2$ Gas Sensor Fabricated with NiO and Reduced Graphene Oxide Hybrid Structure," Mater. Res. Bull., 84, 168-176(2016). https://doi.org/10.1016/j.materresbull.2016.08.004 -
Bai, J., Sun, C. and Jiang, X., "Carbon Dots-decorated Multiwalled Carbon Nanotubes Nanocomposites as a High-performance Electrochemical Sensor for Detection of
$H_2O_2$ in Living Cells," Anal. Bioanal.Chem., 408, 4705-4714(2016). https://doi.org/10.1007/s00216-016-9554-4 - Zhang, W., Zheng, J., Lin, Z., Zhong, L., Shi, J. and Wei, C., "Highly Sensitive Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol Based on Carbon Dot/reduced Graphene Oxide Composite Modified Electrodes," Anal. Methods, 7, 6089-6094(2015). https://doi.org/10.1039/C5AY00848D
- Wei, C., Huang, Q., Hu, S., Zhang, H., Zhang, W. and Wang, Z., "Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nafion/multi-walled Nanotubes/carbon Dots/multi-walled Nanotubes Modified Glassy Electrode," Electrochim. Acta, 149, 237-244(2014). https://doi.org/10.1016/j.electacta.2014.10.051
- Huang, Q., Lin, X., Tong, L. and Tong, Q.-X., "Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells," ACS Sustain. Chem. Eng., 8, 1644-1650(2020). https://doi.org/10.1021/acssuschemeng.9b06623
- Li, L., Liu, D., Wang, K., Mao, H. and You, T., "Quantitative Detection of Nitrite with N-doped Graphene Quantum Dots Decorated N-doped Carbon Carbon, Nanofibers Composite-based Electrochemical Sensor," Sens. Actuators B Chem., 252, 17-23(2017). https://doi.org/10.1016/j.snb.2017.05.155
- Roushani, M. and Abdi, Z., "Novel Electrochemical Sensor Based on Graphene Quantum Dots/riboflavin Nanocomposite for the Detection of Persulfate," Sens. Actuators B Chem., 201, 503-510 (2014). https://doi.org/10.1016/j.snb.2014.05.054
- Roushani, M. and Sarabaegi, M., "Novel Electrochemical Sensor Based on Carbon Nanodots/chitosan Nanocomposite for the Detection of Tryptophan," J. Iran. Chem. Soc., 12, 1875-1882(2015). https://doi.org/10.1007/s13738-015-0662-4
- Yu, L., Yue, X., Yang, R., Jing, S. and Qu, L., "A Sensitive and Low Toxicity Electrochemical Sensor for 2,4-dichlorophenol Based on the Nanocomposite of Carbon Dots, Hexadecyltrimethyl Ammonium Bromide and Chitosan," Sens. Actuators B Chem., 224, 241-247(2016). https://doi.org/10.1016/j.snb.2015.10.035
- Ji, H., Zhou, F., Gu, J., Shu, C., Xi, K. and Jia, X., "Nitrogen-Doped Carbon Dots as A New Substrate for Sensitive Glucose Determination," Sensors, 16, 630(2016). https://doi.org/10.3390/s16050630
- Zheng, W., Wu, H., Jiang, Y., Xu, J., Li, X. and Zhang, W., "A Molecularly-imprinted-electrochemical-sensor Modified with Nanocarbon-dots with High Sensitivity and Selectivity for Rapid Determination of Glucose," Anal. Biochem., 555, 42-49(2018). https://doi.org/10.1016/j.ab.2018.06.004
- Hartley, A. M. and Wilson, G. S., "Unusual Adsorption Effects in the Electrochemical Reduction of Flavin Mononucleotide at Mercury Electrodes," Anal. Chem., 38, 681-687(1966). https://doi.org/10.1021/ac60238a004
- Roushani, M., Karami, E., Salimi, A. and Sahraei, R., "Amperometric Detection of Hydrogen Peroxide at Nano-ruthenium Oxide/riboflavin Nanocomposite-modified Glassy Carbon Electrodes," Electrochim. Acta, 113, 134-140(2013). https://doi.org/10.1016/j.electacta.2013.09.069
- Chen, L. and Gorski, W., "Bioinorganic Composites for Enzyme Electrodes," Anal. Chem., 73, 2862-2868(2001). https://doi.org/10.1021/ac010009z
- Wang, Z., Zhou, X., Zhang, J., Boey, F. and Zhang, H., "Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase," J. Phys. Chem. C, 113, 14071-14075(2009). https://doi.org/10.1021/jp906348x
- Tan, F., Cong, L., Li, X., Zhao, Q., Zhao, H. and Quan, X., "An Electrochemical Sensor Based on Molecularly Imprinted Polypyrrole/graphene Quantum Dots Composite for Detection of Bisphenol A in Water Samples," Sens. Actuators B Chem., 233, 599-606(2016). https://doi.org/10.1016/j.snb.2016.04.146
- Saha, K., Agasti, S. S., Kim, C., Li, X. and Rotello, V. M., "Gold Nanoparticles in Chemical and Biological Sensing," Chem. Rev., 112, 2739-2779(2012). https://doi.org/10.1021/cr2001178
- Li, J., Qu, J., Yang, R., Qu, L. and Harrington, P. de B., "A Sensitive and Selective Electrochemical Sensor Based on Graphene Quantum Dot/Gold Nanoparticle Nanocomposite Modified Electrode for the Determination of Quercetin in Biological Samples," Electroanalysis, 28, 1322-1330(2016). https://doi.org/10.1002/elan.201500490
- Tang, J., Huang, R., Zheng, S., Jiang, S., Yu, H., Li, Z., "A Sensitive and Selective Electrochemical Sensor Based on Graphene Quantum Dots/gold Nanoparticles Nanocomposite Modified Electrode for the Determination of Luteolin in Peanut Hulls," Microchem. J., 145, 899-907(2019). https://doi.org/10.1016/j.microc.2018.12.006
- Zhuang, Z., Lin, H., Zhang, X., Qiu, F. and Yang, H., "A Glassy Carbon Electrode Modified with Carbon Dots and Gold Nanoparticles for Enhanced Electrocatalytic Oxidation and Detection of Nitrite," Microchim. Acta, 183, 2807-2814(2016). https://doi.org/10.1007/s00604-016-1931-3
- Zhang, S., Li, R., Liu, X., Yang, L., Lu, Q. and Liu, M., "A Novel Multiple Signal Amplifying Immunosensor Based on the Strategy of in Situ-produced Electroactive Substance by ALP and Carbon-based Ag-Au Bimetallic as the Catalyst and Signal Enhancer," Biosens. Bioelectron., 92, 457-464(2017). https://doi.org/10.1016/j.bios.2016.10.080
- Cui, M., Huang, J., Wang, Y., Wu, Y. and Luo, X., "Molecularly Imprinted Electrochemical Sensor for Propyl Gallate Based on PtAu Bimetallic Nanoparticles Modified Graphene-carbon Nanotube Composites," Biosens. Bioelectron., 68, 563-569(2015). https://doi.org/10.1016/j.bios.2015.01.029
- Shervedani, R. K., Karevan, M. and Amini, A., "Prickly Nickel Nanowires Grown on Cu Substrate as a Supersensitive Enzymefree Electrochemical Glucose Sensor," Sens. Actuators B Chem., 204, 783-790(2014). https://doi.org/10.1016/j.snb.2014.08.033
- Atar, N., Yola, M. L. and Eren, T., "Sensitive Determination of Citrinin Based on Molecular Imprinted Electrochemical Sensor," Appl. Surf. Sci., 362, 315-322(2016). https://doi.org/10.1016/j.apsusc.2015.11.222
- Rao, H., Zhao, X., Liu, X., Zhong, J., Zhang, Z. and Zou, P., "A Novel Molecularly Imprinted Electrochemical Sensor Based on Graphene Quantum Dots Coated on Hollow Nickel Nanospheres with High Sensitivity and Selectivity for the Rapid Determination of Bisphenol S," Biosens. Bioelectron., 100, 341-347(2018). https://doi.org/10.1016/j.bios.2017.09.016
- Huang, Q., Lin, X., Zhu, J.-J. and Tong, Q.-X., "Pd-Au@carbon Dots Nanocomposite: Facile Synthesis and Application as An Ultrasensitive Electrochemical Biosensor for Determination of Colitoxin DNA in Human Serum," Biosens. Bioelectron., 94, 507-512(2017). https://doi.org/10.1016/j.bios.2017.03.048
- Zhou, Q., Lin, Y., Lin, Y., Wei, Q., Chen, G. and Tang, D., "Highly Sensitive Electrochemical Sensing Platform for Lead Ion Based on Synergetic Catalysis of DNAzyme and Au-Pd Porous Bimetallic Nanostructures," Biosens. Bioelectron., 78, 236-243(2016). https://doi.org/10.1016/j.bios.2015.11.055
- He, Q., Tian, Y., Wu, Y., Liu, J., Li, G. and Deng, P., "Electrochemical Sensor for Rapid and Sensitive Detection of Tryptophan by a Cu(2)O Nanoparticles-Coated Reduced Graphene Oxide Nanocomposite," Biomolecules, 9, 176(2019). https://doi.org/10.3390/biom9050176
- Hasanzadeh, M., Karimzadeh, A., Shadjou, N., Mokhtarzadeh, A., Bageri, L., and Sadeghi, S., "Graphene Quantum Dots Decorated with Magnetic Nanoparticles: Synthesis, Electrodeposition, Characterization and Application as An Electrochemical Sensor Towards Determination of Some Amino Acids at Physiological pH," Mater. Sci. Eng. C, 68, 814-830(2016). https://doi.org/10.1016/j.msec.2016.07.026
-
Abbas, M. W., Soomro, R. A., Kalwar, N. H., Zahoor, M., Avci, A. and Pehlivan, E., "Carbon Quantum Dot Coated
$Fe_3O_4$ Hybrid Composites for Sensitive Electrochemical Detection of Uric Acid," Microchem. J., 146, 517-524(2019). https://doi.org/10.1016/j.microc.2019.01.034 -
Shiri, S., Pajouheshpoor, N., Khoshsafar, H., Amidi, S. and Bagheri, H., "An Electrochemical Sensor for the Simultaneous Determination of Rifampicin and Isoniazid Using a C-dots@
$CuFe_2O_4$ Nanocomposite Modified Carbon Paste Electrode," New J. Chem., 41, 15564-15573(2017). https://doi.org/10.1039/C7NJ03029K - Mallakpour, S. and Khadem, E., in V. K. Thakur, M. K. Thakur, R. K. Gupta (Eds.), Hybrid Polymer Composite Materials, Woodhead Publishing, 235-261(2017).
- Shan, D., Cosnier, S., and Mousty, C., "Layered Double Hydroxides: An Attractive Material for Electrochemical Biosensor Design," Anal. Chem., 75, 3872-3879(2003). https://doi.org/10.1021/ac030030v
- Wang, Y., Wang, Z., Rui, Y. and Li, M., "Horseradish Peroxidase Immobilization on Carbon Carbon, Nanodots/CoFe Layered Double Hydroxides: Direct Electrochemistry and Hydrogen Peroxide Sensing," Biosens. Bioelectron., 64, 57-62(2015). https://doi.org/10.1016/j.bios.2014.08.054
- Samuei, S., Fakkar, J., Rezvani, Z., Shomali, A. and Habibi, B., "Synthesis and Characterization of Graphene Quantum Dots/CoNiAl-layered Double-hydroxide Nanocomposite: Application as a Glucose Sensor," Anal. Biochem., 521, 31-39(2017). https://doi.org/10.1016/j.ab.2017.01.005
- Jiang, Y., Li, Y., Li, Y. and Li, S., "A Sensitive Enzyme-free Hydrogen Peroxide Sensor Based on a Chitosan-graphene Quantum Dot/silver Nanocube Nanocomposite Modified Electrode," Anal. Methods, 8, 2448-2455(2016). https://doi.org/10.1039/C5AY02976G
- Xi, J., Xie, C., Zhang, Y., Wang, L., Xiao, J. and Duan, X., "Pd Nanoparticles Decorated N-Doped Graphene Quantum Dots@NDoped Carbon Hollow Nanospheres with High Electrochemical Sensing Performance in Cancer Detection," ACS Appl. Mater. Interfaces, 8, 22563-22573(2016). https://doi.org/10.1021/acsami.6b05561
- Guo, H., Jin, H., Gui, R., Wang, Z., Xia, J. and Zhang, F., "Electrode Position One-step Preparation of Silver Nanoparticles/carbon Dots/reduced Graphene Oxide Ternary Dendritic Nanocomposites for Sensitive Detection of Doxorubicin," Sens. Actuators B Chem., 253, 50-57(2017). https://doi.org/10.1016/j.snb.2017.06.095
- Bhunia, P., Hwang, E., Min, M., Lee, J., Seo, S. and Some, S., "A Non-volatile Memory Device Consisting of Graphene Oxide Covalently Functionalized with Ionic Liquid," Chem. Commun., 48, 913-915(2012). https://doi.org/10.1039/C1CC16225J
-
Chen, D., Zhuang, X., Zhai, J., Zheng, Y., Lu, H. and Chen, L., "Preparation of Highly Sensitive Pt Nanoparticles-carbon Quantum Dots/ionic Liquid Functionalized Graphene Oxide Nanocomposites and Application for
$H_2O_2$ Detection," Sens. Actuators B Chem., 255, 1500-1506(2018). https://doi.org/10.1016/j.snb.2017.08.156 - Huang, Q., Zhang, H., Hu, S., Li, F., Weng, W. and Chen, J., "A Sensitive and Reliable Dopamine Biosensor was Developed Based on the Au@carbon Dots-chitosan Composite Film," Biosens. Bioelectron., 52, 277-280(2014). https://doi.org/10.1016/j.bios.2013.09.003
- Guo, W., Pi, F., Zhang, H., Sun, J., Zhang, Y. and Sun, X., "A Novel Molecularly Imprinted Electrochemical Sensor Modified with Carbon Dots, Chitosan, Gold Nanoparticles for the Determination of Patulin," Biosens. Bioelectron., 98, 299-304(2017). https://doi.org/10.1016/j.bios.2017.06.036
- Akyildirim, O., Kardas, F., Beytur, M., Yuksek, H., Atar, N. and Yola, M. L., "Palladium Nanoparticles Functionalized Graphene Quantum Dots with Molecularly Imprinted Polymer for Electrochemical Analysis of Citrinin," J. Mol. Liq., 243, 677-681(2017). https://doi.org/10.1016/j.molliq.2017.08.085
-
Ponnaiah, S. K., Prakash, P., Vellaichamy, B., Paulmony, T. and Selvanathan, R., "Picomolar-level Electrochemical Detection of Thiocyanate in the Saliva Samples of Smokers and Non-smokers of Tobacco Using Carbon Dots Doped
$Fe_3O_4$ Nanocomposite Embedded on g-$C_3N_4$ Nanosheets," Electrochim. Acta, 283, 914-921(2018). https://doi.org/10.1016/j.electacta.2018.07.012 - Cai, J., Sun, B., Gou, X., Gou, Y., Li, W. and Hu, F., "A Novel Way for Analysis of Calycosin via Polyaniline Functionalized Graphene Quantum Dots Fabricated Electrochemical Sensor," J. ElectroAnal. Chem., 816, 123-131(2018). https://doi.org/10.1016/j.jelechem.2018.03.035
- Hatamluyi, B., Es'haghi, Z., Modarres Zahed, F., Darroudi, M., "A Novel Electrochemical Sensor Based on GQDs-PANI/ZnONCs Modified Glassy Carbon Electrode for Simultaneous Determination of Irinotecan and 5-Fluorouracil in Biological Samples," Sens. Actuators B Chem., 286, 540-549(2019). https://doi.org/10.1016/j.snb.2019.02.017