References
- Craig NL, Craigie R, Gellert M and Lambowitz Alan M (2015) Mobile DNA III, ASM Press, Washington, D.C. 1051-1078
- Bessereau JL (2006) Transposons in C. elegans; in, The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.70.1
- Subramanian RP, Wildschutte JH, Russo C and Coffin JM (2011) Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 8, 90 https://doi.org/10.1186/1742-4690-8-90
- Vargiu L, Rodriguez-Tome P, Sperber GO et al (2016) Classification and characterization of human endogenous retroviruses; mosaic forms are common. Retrovirology 13, 7 https://doi.org/10.1186/s12977-015-0232-y
- Kim HS (2012) Genomic impact, chromosomal distribution and transcriptional regulation of HERV elements. Mol Cells 33, 539-544 https://doi.org/10.1007/s10059-012-0037-y
- Garcia-Montojo M, Doucet-O'Hare T, Henderson L and Nath A (2018) Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit Rev Microbiol 44, 715-738 https://doi.org/10.1080/1040841X.2018.1501345
- Galli UM, Sauter M, Lecher B et al (2005) Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors. Oncogene 24, 3223-3228 https://doi.org/10.1038/sj.onc.1208543
- Li M, Radvanyi L, Yin B et al (2017) Downregulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. Clin Cancer Res 23, 5892-5911 https://doi.org/10.1158/1078-0432.CCR-17-0001
- Shin W, Lee J, Son S-Y, Ahn K, Kim H-S and Han K (2013) Human-specific HERV-K insertion causes genomic variations in the human genome. PloS One 8, e60605 https://doi.org/10.1371/journal.pone.0060605
- Lee W-C, Kim D-Y, Kim M-J et al (2019) Delay of cell growth and loss of stemness by inhibition of reverse transcription in human mesenchymal stem cells derived from dental tissue. Anim Cells Syst (Seoul) 23, 335-345 https://doi.org/10.1080/19768354.2019.1651767
- Bourque G, Leong B, Vega VB et al (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18, 1752-1762 https://doi.org/10.1101/gr.080663.108
- Ou SH, Wu F, Harrich D, Garcia-Martinez LF and Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69, 3584-3596 https://doi.org/10.1128/JVI.69.6.3584-3596.1995
- Li W, Lee MH, Henderson L et al (2015) Human endogenous retrovirus-K contributes to motor neuron disease. Sci Transl Med 7, 307ra153 https://doi.org/10.1126/scitranslmed.aac8201
- Mitra J, Guerrero EN, Hegde PM et al (2019) Motor neuron disease-associated loss of nuclear TDP-43 is linked to DNA double-strand break repair defects. Proc Natl Acad Sci U S A 116, 4696-4705 https://doi.org/10.1073/pnas.1818415116
- Krug L, Chatterjee N, Borges-Monroy R et al (2017) Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS Genet 13, e1006635 https://doi.org/10.1371/journal.pgen.1006635
- Ash PEA, Zhang YJ, Roberts CM et al (2010) Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 19, 3206-3218 https://doi.org/10.1093/hmg/ddq230
- Saldi TK, Ash PEA, Wilson G et al (2014) TDP-1, the Caenorhabditis elegans ortholog of TDP-43, limits the accumulation of double-stranded RNA. EMBO J 33, 2947-2966 https://doi.org/10.15252/embj.201488740
- Macfarlan TS, Gifford WD, Agarwal S et al (2011) Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev 25, 594-607 https://doi.org/10.1101/gad.2008511
- Ganko EW, Fielman KT and McDonald JF (2001) Evolutionary history of Cer elements and their impact on the C. elegans genome. Genome Res 11, 2066-2074 https://doi.org/10.1101/gr.196201
- Rho M, Choi J-H, Kim S, Lynch M and Tang H (2007) De novo identification of LTR retrotransposons in eukaryotic genomes. BMC genomics 8, 90 https://doi.org/10.1186/1471-2164-8-90
- Fischer SEJ and Ruvkun G (2020) Caenorhabditis elegans ADAR editing and the ERI-6/7/ MOV10 RNAi pathway silence endogenous viral elements and LTR retrotransposons. Proc Natl Acad Sci U S A 117, 5987-5996 https://doi.org/10.1073/pnas.1919028117
- Ni JZ, Kalinava N, Mendoza SG and Gu SG (2018) The spatial and temporal dynamics of nuclear RNAi-targeted retrotransposon transcripts in Caenorhabditis elegans. Development 145, dev167346 https://doi.org/10.1242/dev.167346
- Dennis S, Sheth U, Feldman JL, English KA and Priess JR (2012) C. elegans germ cells show temperature and agedependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog 8, e1002591 https://doi.org/10.1371/journal.ppat.1002591
- Kwon S, Kim EJE, Lee SJV (2018) Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans. BMB Rep 51, 274-279 https://doi.org/10.5483/BMBRep.2018.51.6.111
- Etchberger JF, Lorch A, Sleumer MC et al (2007) The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. Genes Dev 21, 1653-1674 https://doi.org/10.1101/gad.1560107
- Boxem M and van den Heuvel S (2002) C. elegans class B synthetic multivulva genes act in G(1) regulation. Curr Biol 12, 906-911 https://doi.org/10.1016/S0960-9822(02)00844-8
- Clouaire T, Roussigne M, Ecochard V, Mathe C, Amalric F and Girard J-P (2005) The THAP domain of THAP1 is a large C2CH module with zinc-dependent sequence-specific DNA-binding activity. Proc Natl Acad Sci U S A 102, 6907-6912 https://doi.org/10.1073/pnas.0406882102
- Roussigne M, Kossida S, Lavigne A-C et al (2003) The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem Sci 28, 66-69 https://doi.org/10.1016/S0968-0004(02)00013-0
- Majorek KA, Dunin-Horkawicz S, Steczkiewicz K et al (2014) The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Nucleic Acids Res 42, 4160-4179 https://doi.org/10.1093/nar/gkt1414
- Moelling K, Broecker F, Russo G and Sunagawa S (2017) RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense. Front Microbiol 8, 1745-1745 https://doi.org/10.3389/fmicb.2017.01745
- Lehner B, Calixto A, Crombie C et al (2006) Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference. Genome Biol 7, R4 https://doi.org/10.1186/gb-2006-7-1-r4
- Wang D, Kennedy S, Conte D et al (2005) Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436, 593-597 https://doi.org/10.1038/nature04010
- Wu X, Shi Z, Cui M, Han M and Ruvkun G (2012) Repression of Germline RNAi Pathways in Somatic Cells by Retinoblastoma Pathway Chromatin Complexes. PLoS Genet 8, e1002542 https://doi.org/10.1371/journal.pgen.1002542
- Rechtsteiner A, Costello ME, Egelhofer TA, Garrigues JM, Strome S and Petrella LN (2019) Repression of Germline Genes in Caenorhabditis elegans Somatic Tissues by H3K9 Dimethylation of Their Promoters. Genetics 212, 125-140 https://doi.org/10.1534/genetics.118.301878