참고문헌
- Baggeroer, A.B., Kuperman, W.A., & Mikhalevsky, P.N. (1993). An Overview of Matched Field Methods in Ocean Acoustics. IEEE Journal of Oceanic Engineering, 18(4), 401-424. https://doi.org/10.1109/48.262292
- Benson, J., Chapman, N.R., & Antoniou, A. (2000). Geoacoustic Model Inversion Using Artificial Neural Networks. Inverse Problems, 16(6), 1627-1639. https://doi.org/10.1088/0266-5611/16/6/302
- Bianco, M., Gerstoft, P. (2016). Compressive Acoustic Sound Speed Profile Estimation. The Journal of the Acoustical Society of America, 139(3), EL90-EL94. https://doi.org/10.1121/1.4943784
- Bianco, M., & Gerstoft, P. (2017). Dictionary Learning of Sound Speed Profiles. The Journal of the Acoustical Society of America, 141(3), 1749-1758. https://doi.org/10.1121/1.4977926
- Bucker, H.P. (1976). Use of Calculated Sound Fields and Matched Field Detection to Locate Sound Sources in Shallow Water. The Journal of the Acoustical Society of America, 59(2), 368-373. https://doi.org/10.1121/1.380872
- Buscombe, D., & Grams, P.E. (2018). Probabilistic Substrate Classification with Multispectral Acoustic Backscatter: A Comparison of Discriminative and Generative Models. Geoscience, 8(11), 395. https://doi.org/10.3390/geosciences8110395
- Candes, E.J., & Wakin, M.B. (2008). An Introduction to Compressive Sampling. IEEE Signal Processing Magazine, 25(2), 21-30. https://doi.org/10.1109/MSP.2007.914731
- Caiti, A., & Jesus, S.M. (1996). Acoustic Estimation of Seafloor Parameters: A Radial Basis Functions Approach. The Journal of the Acoustical Society of America, 100(3), 1473-1481. https://doi.org/10.1121/1.415994
- Choo, Y., & Seong, Y. (2018). Compressive Sound Speed Profile Inversion Using Eamforming Results. Remote Sensing, 10, 704. https://doi.org/10.3390/rs10050704
- Clay, C.S. (1966). Use of Arrays for Acoustic Transmission in a Noisy Ocean. Review of Geophysics, 4(4), 475-507. https://doi.org/10.1029/RG004i004p00475
- Clay, C.S. (1987). Optimum Time Domain Signal Transmission and Source Location in a Waveguide. The Journal of the Acoustical Society of America, 81(3), 660-664. https://doi.org/10.1121/1.394834
- Clay, C. S., & Li, S. (1988). Time Domain Signal Transmission and Source Location in a Waveguide: Matched Filter and Deconvolution Experiments. The Journal of the Acoustical Society of America, 83(4), 1377-1417. https://doi.org/10.1121/1.395942
- Collins, M.D., & Kuperman, W.A. (1991). Focalization: Environmental Focusing and Source Localization. The Journal of the Acoustical Society of America, 90(3), 1410-1422. https://doi.org/10.1121/1.401933
- Collins, M.D., Kuperman, W.A., & Schmidt, H. (1992). Nonlinear Inversion for Ocean-bottom Properties. The Journal of the Acoustical Society of America, 92, 2770-2783. https://doi.org/10.1121/1.404394
- Diesing, M., Green, S.L., Stephens, D., Lark, R.M., Stewart, H.A., & Dove, D. (2014). Mapping Seabed Sediment: Comparison of Manual, Geostatistical, Object-based Image Analysis and Machine Learning Approaches. Continental Shelf Research, 84, 107-119. https://doi.org/10.1016/j.csr.2014.05.004.
- Dosso, S.E., Yeremy, M.L., Ozard, J.M., & Chapman, N.R. (1993). Estimation of Ocean Bottom Properties by Matched-field Inversion of Acoustic Field Data. IEEE Journal of Oceanic Engineering, 18, 232-239. https://doi.org/10.1109/JOE.1993.236361
- Gerstoft, P. (1994). Inversion of Seismoacoustic Data Using Genetic Algorithms and a Posteriori Probability Distribution. The Journal of the Acoustical Society of America, 95, 770-782. https://doi.org/10.1121/1.408387
- Gerstoft, P., Mecklenbrauker, C.F., Seong. W., & Bianco, M. (2018). Introduction to Compressive Sensing in Acoustics. The Journal of the Acoustical Society of America, 143(6), 3731-3736. https://doi.org/10.1121/1.5043089
- Jain, S., & Ali, M.M. (2006). Estimation of Sound Speed Profiles Using Artificial Nural Network. IEEE Geoscience and Remote Sensing Letters, 3(4), 467-470. https://doi.org/10.1109/LGRS.2006.876221
- Lindsay, C.E., & Chapman, N.R. (1993). Matched Field Inversion for Geoacoustic Model Parameters Using Adaptive Simulated Annealing. IEEE Journal of Oceanic Engineering, 18(3), 224-231. https://doi.org/10.1109/JOE.1993.236360
- Lynch, J.F., Rajan, S.D., & Frisk, G.V. (1991). A Comparison of Broadband and Narrow-band Modal Inversions for Bottom Properties at a Site Near Corpus Christi, Texas. The Journal of the Acoustical Society of America, 89(2), 648-665. https://doi.org/10.1121/1.400676
- Martin, K.M., Wood, W.T., & Becker, J.J. (2015). A Global Prediction of Seafloor Sediment Porosity Using Machine Learning. Geophysical Research Letters, 42(24), 10640-10646. https://doi.org/10.1002/2015GL065279
- Michalopoulou, Z-H., Alexandrou, D., & de Moustier, C. (1995). Application of Neural and Statistical Classifiers to the Problem of Seafloor Characterization. IEEE Journal of Oceanic Engineering, 20(3), 190-197. https://doi.org/10.1109/48.393074
- Park, J.C., & Kennedy, R.M. (1996). Remote Sensing of Ocean Sound Speed Profiles by a Perceptron Neural Network. IEEE Journal of Oceanic Engineering, 21(2), 216-224. https://doi.org/10.1109/48.486796
- Parvulescu, A., & Clay, C.S. (1965). Reproducibility of Signal Transmission in the Ocean. Radio Electronic Engineer, 29(4), 223-228. https://doi.org/10.1049/ree.1965.0047
- Rajan, S.D., Lynch, J.F., & Frisk, G.V. (1987). Perturbative Inversion Methods for Obtaining Bottom Parameters in Shallow Water. The Journal of the Acoustical Society of America, 82(3), 998-1017. https://doi.org/10.1121/1.395300
- Shang, E.C. (1989). Ocean Acoustic Tomography Based on Adiabatic Mode Theory. The Journal of the Acoustical Society of America, 85(4), 1531-1537. https://doi.org/10.1121/1.397355
- Stephens, D., & Diesing, M. (2014). A Comparison of Supervised Classification Methods for the Prediction of Substrate Type Using Multibeam Acoustic and Legacy Grain-size Data. Plos One, 9(4), e93950. https://doi.org/10.1371/journal.pone.0093950
- Tartakovsky, D.M., Guadagnini, A., & Wohlberg, B.E. (2008). Machine learning methods for inverse modeling. Geostatistics for Environmental Applications, 117-125, Springer Science Business Media.
- Tolstoy, A. (1992). Linearization of the Matched Field Processing Approach to Acoustic Tomography. The Journal of the Acoustical Society of America, 91(2), 781-787. https://doi.org/10.1121/1.402538
- Tolstoy, A. (1993). Matched Field Processing for Underwater Acoustics. Singapore: World Scientific.
- Tolstoy, A., Chapman, N.R., & Brooke, G. (1998). Workshop '97: Benchmarking for Geoacoustic Inversion in Shallow Water. Journal of Computational Acoustics, 6(1&2), 1-28. https://doi.org/10.1142/S0218396X9800003X
- Tolstoy, A., Diachok, O., & Frazer, L.N. (1991). Acoustic Tomography via Matched Field Processing. The Journal of the Acoustical Society of America, 89(3), 1119-1127. https://doi.org/10.1121/1.400647
- Yang, H., Lee, K., Choo, Y., Kim, K. (2020a). Underwater Acoustic Research Trends with Machine Learning: General Background. Journal of Ocean Engineering and Technology, 34(2), 147-154. https://doi.org/10.26748/KSOE.2020.015
- Yang, H., Lee, K., Choo, Y., & Kim, K. (2020b). Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications. Journal of Ocean Engineering and Technology, 34(3), 227-236. https://doi.org/10.26748/KSOE.2020.017
- Yang, H., Byun, S.-H., Lee, K., Choo, Y., & Kim, K. (2020c). Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications. Journal of Ocean Engineering and Technology. In Press. https://doi.org/10.26748/KSOE. 2020.018
- Yardim, C., Gerstoft, P., Hodgkiss, W.S., & Traer, J. (2014). Compressive Geoacoustic Inversion Using Ambient Noise. The Journal of the Acoustical Society of America, 135(3), 1245-1255. https://doi.org/10.1121/1.4864792