DOI QR코드

DOI QR Code

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang (Department of Naval Architecture & Ocean Engineering, Seoul National University) ;
  • Lee, Keunhwa (Department of Defense System Engineering, Sejong University) ;
  • Choo, Youngmin (Department of Defense System Engineering, Sejong University) ;
  • Kim, Kookhyun (School of Naval Architecture & Ocean Engineering, Tongmyong University)
  • 투고 : 2020.03.02
  • 심사 : 2020.04.13
  • 발행 : 2020.10.30

초록

Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.

키워드

참고문헌

  1. Baggeroer, A.B., Kuperman, W.A., & Mikhalevsky, P.N. (1993). An Overview of Matched Field Methods in Ocean Acoustics. IEEE Journal of Oceanic Engineering, 18(4), 401-424. https://doi.org/10.1109/48.262292
  2. Benson, J., Chapman, N.R., & Antoniou, A. (2000). Geoacoustic Model Inversion Using Artificial Neural Networks. Inverse Problems, 16(6), 1627-1639. https://doi.org/10.1088/0266-5611/16/6/302
  3. Bianco, M., Gerstoft, P. (2016). Compressive Acoustic Sound Speed Profile Estimation. The Journal of the Acoustical Society of America, 139(3), EL90-EL94. https://doi.org/10.1121/1.4943784
  4. Bianco, M., & Gerstoft, P. (2017). Dictionary Learning of Sound Speed Profiles. The Journal of the Acoustical Society of America, 141(3), 1749-1758. https://doi.org/10.1121/1.4977926
  5. Bucker, H.P. (1976). Use of Calculated Sound Fields and Matched Field Detection to Locate Sound Sources in Shallow Water. The Journal of the Acoustical Society of America, 59(2), 368-373. https://doi.org/10.1121/1.380872
  6. Buscombe, D., & Grams, P.E. (2018). Probabilistic Substrate Classification with Multispectral Acoustic Backscatter: A Comparison of Discriminative and Generative Models. Geoscience, 8(11), 395. https://doi.org/10.3390/geosciences8110395
  7. Candes, E.J., & Wakin, M.B. (2008). An Introduction to Compressive Sampling. IEEE Signal Processing Magazine, 25(2), 21-30. https://doi.org/10.1109/MSP.2007.914731
  8. Caiti, A., & Jesus, S.M. (1996). Acoustic Estimation of Seafloor Parameters: A Radial Basis Functions Approach. The Journal of the Acoustical Society of America, 100(3), 1473-1481. https://doi.org/10.1121/1.415994
  9. Choo, Y., & Seong, Y. (2018). Compressive Sound Speed Profile Inversion Using Eamforming Results. Remote Sensing, 10, 704. https://doi.org/10.3390/rs10050704
  10. Clay, C.S. (1966). Use of Arrays for Acoustic Transmission in a Noisy Ocean. Review of Geophysics, 4(4), 475-507. https://doi.org/10.1029/RG004i004p00475
  11. Clay, C.S. (1987). Optimum Time Domain Signal Transmission and Source Location in a Waveguide. The Journal of the Acoustical Society of America, 81(3), 660-664. https://doi.org/10.1121/1.394834
  12. Clay, C. S., & Li, S. (1988). Time Domain Signal Transmission and Source Location in a Waveguide: Matched Filter and Deconvolution Experiments. The Journal of the Acoustical Society of America, 83(4), 1377-1417. https://doi.org/10.1121/1.395942
  13. Collins, M.D., & Kuperman, W.A. (1991). Focalization: Environmental Focusing and Source Localization. The Journal of the Acoustical Society of America, 90(3), 1410-1422. https://doi.org/10.1121/1.401933
  14. Collins, M.D., Kuperman, W.A., & Schmidt, H. (1992). Nonlinear Inversion for Ocean-bottom Properties. The Journal of the Acoustical Society of America, 92, 2770-2783. https://doi.org/10.1121/1.404394
  15. Diesing, M., Green, S.L., Stephens, D., Lark, R.M., Stewart, H.A., & Dove, D. (2014). Mapping Seabed Sediment: Comparison of Manual, Geostatistical, Object-based Image Analysis and Machine Learning Approaches. Continental Shelf Research, 84, 107-119. https://doi.org/10.1016/j.csr.2014.05.004.
  16. Dosso, S.E., Yeremy, M.L., Ozard, J.M., & Chapman, N.R. (1993). Estimation of Ocean Bottom Properties by Matched-field Inversion of Acoustic Field Data. IEEE Journal of Oceanic Engineering, 18, 232-239. https://doi.org/10.1109/JOE.1993.236361
  17. Gerstoft, P. (1994). Inversion of Seismoacoustic Data Using Genetic Algorithms and a Posteriori Probability Distribution. The Journal of the Acoustical Society of America, 95, 770-782. https://doi.org/10.1121/1.408387
  18. Gerstoft, P., Mecklenbrauker, C.F., Seong. W., & Bianco, M. (2018). Introduction to Compressive Sensing in Acoustics. The Journal of the Acoustical Society of America, 143(6), 3731-3736. https://doi.org/10.1121/1.5043089
  19. Jain, S., & Ali, M.M. (2006). Estimation of Sound Speed Profiles Using Artificial Nural Network. IEEE Geoscience and Remote Sensing Letters, 3(4), 467-470. https://doi.org/10.1109/LGRS.2006.876221
  20. Lindsay, C.E., & Chapman, N.R. (1993). Matched Field Inversion for Geoacoustic Model Parameters Using Adaptive Simulated Annealing. IEEE Journal of Oceanic Engineering, 18(3), 224-231. https://doi.org/10.1109/JOE.1993.236360
  21. Lynch, J.F., Rajan, S.D., & Frisk, G.V. (1991). A Comparison of Broadband and Narrow-band Modal Inversions for Bottom Properties at a Site Near Corpus Christi, Texas. The Journal of the Acoustical Society of America, 89(2), 648-665. https://doi.org/10.1121/1.400676
  22. Martin, K.M., Wood, W.T., & Becker, J.J. (2015). A Global Prediction of Seafloor Sediment Porosity Using Machine Learning. Geophysical Research Letters, 42(24), 10640-10646. https://doi.org/10.1002/2015GL065279
  23. Michalopoulou, Z-H., Alexandrou, D., & de Moustier, C. (1995). Application of Neural and Statistical Classifiers to the Problem of Seafloor Characterization. IEEE Journal of Oceanic Engineering, 20(3), 190-197. https://doi.org/10.1109/48.393074
  24. Park, J.C., & Kennedy, R.M. (1996). Remote Sensing of Ocean Sound Speed Profiles by a Perceptron Neural Network. IEEE Journal of Oceanic Engineering, 21(2), 216-224. https://doi.org/10.1109/48.486796
  25. Parvulescu, A., & Clay, C.S. (1965). Reproducibility of Signal Transmission in the Ocean. Radio Electronic Engineer, 29(4), 223-228. https://doi.org/10.1049/ree.1965.0047
  26. Rajan, S.D., Lynch, J.F., & Frisk, G.V. (1987). Perturbative Inversion Methods for Obtaining Bottom Parameters in Shallow Water. The Journal of the Acoustical Society of America, 82(3), 998-1017. https://doi.org/10.1121/1.395300
  27. Shang, E.C. (1989). Ocean Acoustic Tomography Based on Adiabatic Mode Theory. The Journal of the Acoustical Society of America, 85(4), 1531-1537. https://doi.org/10.1121/1.397355
  28. Stephens, D., & Diesing, M. (2014). A Comparison of Supervised Classification Methods for the Prediction of Substrate Type Using Multibeam Acoustic and Legacy Grain-size Data. Plos One, 9(4), e93950. https://doi.org/10.1371/journal.pone.0093950
  29. Tartakovsky, D.M., Guadagnini, A., & Wohlberg, B.E. (2008). Machine learning methods for inverse modeling. Geostatistics for Environmental Applications, 117-125, Springer Science Business Media.
  30. Tolstoy, A. (1992). Linearization of the Matched Field Processing Approach to Acoustic Tomography. The Journal of the Acoustical Society of America, 91(2), 781-787. https://doi.org/10.1121/1.402538
  31. Tolstoy, A. (1993). Matched Field Processing for Underwater Acoustics. Singapore: World Scientific.
  32. Tolstoy, A., Chapman, N.R., & Brooke, G. (1998). Workshop '97: Benchmarking for Geoacoustic Inversion in Shallow Water. Journal of Computational Acoustics, 6(1&2), 1-28. https://doi.org/10.1142/S0218396X9800003X
  33. Tolstoy, A., Diachok, O., & Frazer, L.N. (1991). Acoustic Tomography via Matched Field Processing. The Journal of the Acoustical Society of America, 89(3), 1119-1127. https://doi.org/10.1121/1.400647
  34. Yang, H., Lee, K., Choo, Y., Kim, K. (2020a). Underwater Acoustic Research Trends with Machine Learning: General Background. Journal of Ocean Engineering and Technology, 34(2), 147-154. https://doi.org/10.26748/KSOE.2020.015
  35. Yang, H., Lee, K., Choo, Y., & Kim, K. (2020b). Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications. Journal of Ocean Engineering and Technology, 34(3), 227-236. https://doi.org/10.26748/KSOE.2020.017
  36. Yang, H., Byun, S.-H., Lee, K., Choo, Y., & Kim, K. (2020c). Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications. Journal of Ocean Engineering and Technology. In Press. https://doi.org/10.26748/KSOE. 2020.018
  37. Yardim, C., Gerstoft, P., Hodgkiss, W.S., & Traer, J. (2014). Compressive Geoacoustic Inversion Using Ambient Noise. The Journal of the Acoustical Society of America, 135(3), 1245-1255. https://doi.org/10.1121/1.4864792