DOI QR코드

DOI QR Code

BLSTM을 이용한 주가 예측 시스템 연구

Research on Stock price prediction system based on BLSTM

  • 투고 : 2020.08.28
  • 심사 : 2020.10.20
  • 발행 : 2020.10.28

초록

4차산업혁명의 핵심인 인공지능 기술은 인간의 능력을 뛰어넘어 주식예측에도 적용하고 있으면 예측이 불가능한 것을 딥러닝 기법과 머신러닝을 통하여 지능화된 판단을 내리고 있는 실정이다. 미국의 펀드매니지먼트 회사에서는 증시 에널리스트의 역할을 인공지능이 대신하고 있으며, 이 분야의 연구가 활발히 진행 중에 있다. 본 연구에서는 BLSTM을 이용하여 기존의 LSTM방식의 단방향 예측에서 발생하는 오류를 줄이고, 양방향으로 예측하여 예측에 대한 오류를 줄이고, 주식 가격에 영향을 미치는 거시 지표, 즉 경제성장률, 경제지표, 이자율, 무역수지, 환율, 통화량을 분석한다. 거시 지표 분석 후에 개별 주식에 대한 PBR, BPS, ROE 예측과 가장 주식 가격에 영향을 미치는 외국인, 기관, 연기금 등 매수와 매도 물량을 분석하여 주식의 목표주가를 정확히 예측하여 주식 투자에 도움을 주기 위해 본 연구를 수행했다.

Artificial intelligence technology, which is the core of the 4th industrial revolution, is making intelligent judgments through deep learning techniques and machine learning that it is impossible to predict if it is applied to stock prediction beyond human capabilities. In US fund management companies, artificial intelligence is replacing the role of stock market analyst, and research in this field is actively underway. In this study, we use BLSTM to reduce errors that occur in unidirectional prediction of the existing LSTM method, reduce errors in predictions by predicting in both directions, and macroscopic indicators that affect stock prices, namely, economic growth rate, economic indicators, interest rate, analyze the trade balance, exchange rate, and volume of currency. To help stock investment by accurately predicting the target price of stocks by analyzing the PBR, BPS, and ROE of individual stocks after analyzing macro-indicators, and by analyzing the purchase and sale quantities of foreigners, institutions, pension funds, etc., which have the most influence on stock prices.

키워드

참고문헌

  1. Patil, P. (n.d.). Stock Market Prediction Using Ensemble Of Graph Theory, Machine Learning And Deep Learning Models. DOI:10.31979/etd.38nc-j52r
  2. Asadifar, S. & Kahani, M. (2017). Semantic association rule mining: A new approach for stock market prediction. 2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC). DOI:10.1109/csiec.2017.7940158
  3. Jeon, S., Hong, B., Kim, J. & Lee, H. (2016). Stock Price Prediction based on Stock Big Data and Pattern Graph Analysis. Proceedings of the International Conference on Internet of Things and Big Data. DOI:10.5220/0005876102230231
  4. BLSTM Recurrent Neural Network for Object Recognition. (2016). Journal of Artificial Intelligence Practice. DOI:10.23977/jaip.2016.11005
  5. Althelaya, K. A., El-Alfy, E. M. & Mohammed, S. (2018). Evaluation of bidirectional LSTM for short-and long-term stock market prediction. 2018 9th International Conference on Information and Communication Systems (ICICS). DOI:10.1109/iacs.2018.8355458
  6. Zayats, V., Ostendorf, M. & Hajishirzi, H. (2016). Disfluency Detection Using a Bidirectional LSTM. Interspeech 2016. DOI:10.21437/interspeech.2016-1247.
  7. The Effect on KOSPI 200 Futures after Launching KOSPI 200 Option. Proceedings of the 2015 International Conference on Industrial Technology and Management Science. DOI:10.2991/itms-15.2015.347
  8. Schuster, M. & Paliwal, K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. DOI:10.1109/78.650093
  9. Cheung, Y. & Ng, L. K. (1998). International evidence on the stock market and aggregate economic activity. Journal of Empirical Finance, 5(3), 281-296. DOI:10.1016/s0927-5398(97)00025-x
  10. Chung, H. & Lee, B. (1998). Fundamental and nonfundamental components in stock prices of Pacific-Rim countries. Pacific-Basin Finance Journal, 6(3-4), 321-346. DOI:10.1016/s0927-538x(98)00016-x
  11. Wong, K. A. (1989). The firm size effect on stock returns in a developing stock market. Economics Letters, 30(1), 61-65. DOI:10.1016/0165-1765(89)90157-2
  12. Cutler, D., Poterba, J. & Summers, L. (1988). What Moves Stock Prices? DOI:10.3386/w2538
  13. Kamal, J. B. (2018). Inflation, Inflation Uncertainty and Asset Returns: Cross Country Evidences. SSRN Electronic Journal. DOI:10.2139/ssrn.3303027
  14. Oskooe, S. A. (2012). Oil price shocks and stock market in oil-exporting countries: Evidence from Iran stock market. OPEC Energy Review, 36(4), 396-412. DOI:10.1111/j.1753-0237.2012.00217.x
  15. Lee, B. (1992). Causal Relations Among Stock Returns, Interest Rates, Real Activity, and Inflation. The Journal of Finance, 47(4), 1591-1603. DOI:10.1111/j.1540-6261.1992.tb04673.x
  16. Park, J. & Kim, S. (2016). Study of Stock Information Applications' User Experience -Focused on Finance Expert Users of Kakao Stock and JeungGwon Tong-. Journal of Digital Convergence, 14(10), 393-398. DOI:10.14400/jdc.2016.14.10.393
  17. Choi, J. (2015). Convergence analysis about volatility of the stock markets before and after the currency crisis - With a focus on Normal distribution, kurtosis, skewness. Journal of Digital Convergence, 13(8), 153-160. DOI:10.14400/jdc.2015.13.8.153
  18. Mukherjee, T. K. & Naka, A. (1995). Dynamic Relations Between Macroeconomic Variables And The Japanese Stock Market: An Application Of A Vector Error Correction Model. Journal of Financial Research, 18(2), 223-237. DOI:10.1111/j.1475-6803.1995.tb00563.x
  19. Robinson, A. (1994). An application of recurrent nets to phone probability estimation. IEEE Transactions on Neural Networks, 5(2), 298-305. DOI:10.1109/72.279192
  20. M. Schuster & K. K. Paliwal. (1997). Bidirectional Molecule Generation with Recurrent Neural Networks. (n.d.). DOI:10.1021/acs.jcim.9b00943.s001
  21. S. H. Hong. (2018). Private information protection method and countermeasures in Big-data environment : Survey. Journal of the Korea Convergence Society, 9(10), 55-59. DOI:10.15207/JKCS.2018.9.10.055