References
- Patil, P. (n.d.). Stock Market Prediction Using Ensemble Of Graph Theory, Machine Learning And Deep Learning Models. DOI:10.31979/etd.38nc-j52r
- Asadifar, S. & Kahani, M. (2017). Semantic association rule mining: A new approach for stock market prediction. 2017 2nd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC). DOI:10.1109/csiec.2017.7940158
- Jeon, S., Hong, B., Kim, J. & Lee, H. (2016). Stock Price Prediction based on Stock Big Data and Pattern Graph Analysis. Proceedings of the International Conference on Internet of Things and Big Data. DOI:10.5220/0005876102230231
- BLSTM Recurrent Neural Network for Object Recognition. (2016). Journal of Artificial Intelligence Practice. DOI:10.23977/jaip.2016.11005
- Althelaya, K. A., El-Alfy, E. M. & Mohammed, S. (2018). Evaluation of bidirectional LSTM for short-and long-term stock market prediction. 2018 9th International Conference on Information and Communication Systems (ICICS). DOI:10.1109/iacs.2018.8355458
- Zayats, V., Ostendorf, M. & Hajishirzi, H. (2016). Disfluency Detection Using a Bidirectional LSTM. Interspeech 2016. DOI:10.21437/interspeech.2016-1247.
- The Effect on KOSPI 200 Futures after Launching KOSPI 200 Option. Proceedings of the 2015 International Conference on Industrial Technology and Management Science. DOI:10.2991/itms-15.2015.347
- Schuster, M. & Paliwal, K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681. DOI:10.1109/78.650093
- Cheung, Y. & Ng, L. K. (1998). International evidence on the stock market and aggregate economic activity. Journal of Empirical Finance, 5(3), 281-296. DOI:10.1016/s0927-5398(97)00025-x
- Chung, H. & Lee, B. (1998). Fundamental and nonfundamental components in stock prices of Pacific-Rim countries. Pacific-Basin Finance Journal, 6(3-4), 321-346. DOI:10.1016/s0927-538x(98)00016-x
- Wong, K. A. (1989). The firm size effect on stock returns in a developing stock market. Economics Letters, 30(1), 61-65. DOI:10.1016/0165-1765(89)90157-2
- Cutler, D., Poterba, J. & Summers, L. (1988). What Moves Stock Prices? DOI:10.3386/w2538
- Kamal, J. B. (2018). Inflation, Inflation Uncertainty and Asset Returns: Cross Country Evidences. SSRN Electronic Journal. DOI:10.2139/ssrn.3303027
- Oskooe, S. A. (2012). Oil price shocks and stock market in oil-exporting countries: Evidence from Iran stock market. OPEC Energy Review, 36(4), 396-412. DOI:10.1111/j.1753-0237.2012.00217.x
- Lee, B. (1992). Causal Relations Among Stock Returns, Interest Rates, Real Activity, and Inflation. The Journal of Finance, 47(4), 1591-1603. DOI:10.1111/j.1540-6261.1992.tb04673.x
- Park, J. & Kim, S. (2016). Study of Stock Information Applications' User Experience -Focused on Finance Expert Users of Kakao Stock and JeungGwon Tong-. Journal of Digital Convergence, 14(10), 393-398. DOI:10.14400/jdc.2016.14.10.393
- Choi, J. (2015). Convergence analysis about volatility of the stock markets before and after the currency crisis - With a focus on Normal distribution, kurtosis, skewness. Journal of Digital Convergence, 13(8), 153-160. DOI:10.14400/jdc.2015.13.8.153
- Mukherjee, T. K. & Naka, A. (1995). Dynamic Relations Between Macroeconomic Variables And The Japanese Stock Market: An Application Of A Vector Error Correction Model. Journal of Financial Research, 18(2), 223-237. DOI:10.1111/j.1475-6803.1995.tb00563.x
- Robinson, A. (1994). An application of recurrent nets to phone probability estimation. IEEE Transactions on Neural Networks, 5(2), 298-305. DOI:10.1109/72.279192
- M. Schuster & K. K. Paliwal. (1997). Bidirectional Molecule Generation with Recurrent Neural Networks. (n.d.). DOI:10.1021/acs.jcim.9b00943.s001
- S. H. Hong. (2018). Private information protection method and countermeasures in Big-data environment : Survey. Journal of the Korea Convergence Society, 9(10), 55-59. DOI:10.15207/JKCS.2018.9.10.055