DOI QR코드

DOI QR Code

Case Studies for Insurance Service Marketing Using Artificial Intelligence(AI) in the InsurTech Industry.

인슈어테크(InsurTech)산업에서의 인공지능(AI)을 활용한 보험서비스 마케팅사례 연구

  • Jo, Jae-Wook (Department of Business Administration, Daelim University)
  • Received : 2020.09.09
  • Accepted : 2020.10.20
  • Published : 2020.10.28

Abstract

Through case studies for insurance service marketing using artificial intelligence(AI) in the insurtech industry, it investigated how innovative technologies(artificial intelligence, machine learning etc.) are being used in the insurance ecosystems. In particular, through domestic and international case studies, it was examined by Lemonade's service of insurance contracts and getting the indemnity and AI company's service of calculating the compensation through a medical certificate image based on OCR, which brought disruptive innovations using artificial intelligence. As a result of the case analysis, these services have drastically shortened the lead time of insurance contracts and payment through machine learning using numerous customer data based on artificial intelligence. And accurate and reasonable compensation was calculated in the estimation of indemnity, which has a lot of disputes between customers and insurance companies. It was able to increase customer satisfaction and customer value.

최근 활성화 되고 있는 인슈어테크(InsurTech) 산업에서의 인공지능(AI)을 활용한 보험서비스 마케팅 사례연구를 통해, 보험산업 생태계에서 혁신적인 기술(예: 인공지능, 기계학습 등)이 어떻게 활용되고 있는지 살펴보았다. 특히, 국내·외 서비스 사례연구를 통해 인공지능기술을 활용하여 파괴적 혁신을 가져온 미국의 레모네이드(Lemonade)사의 챗봇을 이용한 신속하고, 간편한 보험가입 및 보험금 지급 서비스, 국내 AI컴퍼니의 광학 문자 인식(OCR)기반의 진단서 입력을 통해 예상 보험금이 산출되는 보험금 산정서비스를 고찰해 보았다. 사례분석 결과 인공지능 기반의 수많은 고객데이터를 활용한 기계학습을 통해 보험 가입 및 지급 절차에 있어 리드타임을 획기적으로 단축하였고, 고객과 보험사간의 분쟁이 많은 보험금 산정에 있어서도 정확하고 합리적인 보험금을 산출함으로써, 고객만족과 고객가치를 높일 수 있었다.

Keywords

References

  1. V. Ricciardi. (2018). InsurTech definition as its own manifesto. The INSURTECH Book: The insurance technology handbook for investors, entrepreneurs and Fintech visionaries, John Wiley & Sons.
  2. D. Cortis., J. Debattista., J. Debono & M. Farrell. (2019). InsurTech. In Disrupting finance, Palgrave Pivot, Cham.
  3. Y. H. Cho & H. Y. Lee (2018, January). Cases and implications of major insurtech companies. KIRI Weekly.
  4. P. Marano. (2019). Navigating InsurTech: The digital intermediaries of insurance products and customer protection in the EU. Maastricht Journal of European and Comparative Law, 26(2), 294-315. https://doi.org/10.1177/1023263X19830345
  5. S. J. Park & J. Y. Park. (2017). InsurTech Innovation: the Current and the Future. Seoul : KIRI
  6. M. Koprivica. (2018, November). Insurtech: challenges and opportunities for the insurance sector. 2nd International Scientific Conference ITEMA. (pp. 619-625). Austria. DOI: https://doi.org/10.31410/itema.2018.619
  7. W. T. Watson. (2018). Quarterly InsurTech Briefing Q1. London
  8. A. Sen & D. LAM (2016. 6. 10). Insurtech: disruptions and opportunities in the insurance industry. Pinebridge.com.
  9. I. Y. Yun (2017. March). Insurance and technology convergence, insurtech. Convergence Weekly TIP
  10. A. Braun & F. Schreiber. (2017). The current InsurTech landscape: business models and disruptive potential. Institute of Insurance Economics I. VW-HSG, University of St. Gallen.
  11. G. Brewka. (1996). Artificial intelligence-a modern approach by Stuart Russell and Peter Norvig, Prentice Hall. Series in Artificial Intelligence, Englewood Cliffs, NJ. The Knowledge Engineering Review, 11(1), 78-79. https://doi.org/10.1017/S0269888900007724
  12. A. Bundy. (2017). Preparing for the future of Artificial Intelligence. US DOI: https://doi.org/10.1007/s00146-016-0685-0
  13. D. K. Yi & J. E. Park. (2019). Digital signal change through artificial intelligence machine learning method comparison and learning. Journal of Digital Convergence, 17(10), 251-258. DOI : 10.14400/JDC.2019.17.10.251
  14. E. Alpaydin. (2020). Introduction to machine learning. MIT press.
  15. T. M. Mitchell. (1997). Machine Learning, New York: McGraw-Hill
  16. H. H. Lee, S. H. Chung & E. J. Choi. (2016). A case study on machine learning applications and performance improvement in learning algorithm. Journal of Digital Convergence, 14(2), 245-258. DOI : 10.14400/JDC.2016.14.2.245
  17. G. H. Kim & Y. G. Hong. (2017). Machine learning trends in networks. The Journal of The Korean Institute of Communication Sciences, 34(10), 38-44.
  18. D. H. Choi & J. O. Park. (2015). Security tendency analysis techniques through machine learning algorithms applications in big data environments, Journal of Digital Convergence, 13(9), 269-276. DOI : 10.14400/JDC.2015.13.9.269
  19. https://www.lemonade.com
  20. https://biz.chosun.com
  21. https://secfilings.nasdaq.com