DOI QR코드

DOI QR Code

ON A NEW CLASS OF FUNCTIONS RELATED WITH MITTAG-LEFFLER AND WRIGHT FUNCTIONS AND THEIR PROPERTIES

  • Bansal, Deepak (Department of Mathematics College of Engg. and Technology) ;
  • Mehrez, Khaled (Departement de Mathematiques ISSAT Kasserine Universite de Kairouan)
  • 투고 : 2020.01.21
  • 심사 : 2020.05.22
  • 발행 : 2020.10.31

초록

In the present paper, we define new class of functions Tα,β(λ; z) which is an extension of the classical Wright function and the Mittag-Leffler function. We show some mean value inequalities for the this function, such as Turán-type inequalities, Lazarević-type inequalities and Wilker-type inequalities. Moreover, integrals formula and integral inequality for the function Tα,β(λ; z) are presented.

키워드

참고문헌

  1. M. M. Dzrbasjan, Integral transforms and representations of functions in the complex domain (Russian), Izdat. "Nauka", Moscow, 1966.
  2. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. 3, New York, McGraw-Hill, 1955.
  3. R. Gorenflo, Y. Luchko, and F. Mainardi, Analytic properties and applications of Wright functions, Frac. Cal. Appl. Anal. 2 (1999), no. 4, 383-414.
  4. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. https://doi.org/10.1142/9789812817747
  5. K. R. Lang, Astrophysical Formulae, Vol. 1: Radiation, Gas Processes and High-energy Astrophysics, 3rd edition, Revised edition, Springer-Verlag, New York, 1999.
  6. K. R. Lang, Astrophysical Formulae, Vol. 2: Space, Time, Matter and Cosmology, Springer- Verlag, New York, 1999.
  7. F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett. 9 (1996), no. 6, 23-28. https://doi.org/10.1016/0893-9659(96)00089-4
  8. K. Mehrez, Functional inequalities for the Wright functions, Integral Transforms Spec. Funct. 28 (2017), no. 2, 130-144. https://doi.org/10.1080/10652469.2016.1254628
  9. K. Mehrez and S. M. Sitnik, Functional inequalities for the Mittag-Leffler functions, Results Math. 72 (2017), no. 1-2, 703-714. https://doi.org/10.1007/s00025-017-0664-x
  10. K. Mehrez and S. M. Sitnik, Turan type inequalities for classical and generalized Mittag-Leffler functions, Anal. Math. 44 (2018), no. 4, 521-541. https://doi.org/10.1007/s10476-018-0404-9
  11. S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika 44 (1997), no. 2, 278-301. https://doi.org/10.1112/ S0025579300012602
  12. R. K. Saxena, A. M. Mathai, and H. J. Haubold, On fractional kinetic equations, Astrophysics and Space Science 282 (2002), 281-287. https://doi.org/10.1023/A:1021175108964
  13. E. M. Wright, On the Coefficients of Power Series Having Exponential Singularities, J. London Math. Soc. 8 (1933), no. 1, 71-79. https://doi.org/10.1112/jlms/s1-8.1.71