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ON A NEW CLASS OF FUNCTIONS RELATED WITH

MITTAG-LEFFLER AND WRIGHT FUNCTIONS

AND THEIR PROPERTIES

Deepak Bansal and Khaled Mehrez

Abstract. In the present paper, we define new class of functions
Tα,β(λ; z) which is an extension of the classical Wright function and the

Mittag-Leffler function. We show some mean value inequalities for the

this function, such as Turán-type inequalities, Lazarević-type inequalities
and Wilker-type inequalities. Moreover, integrals formula and integral

inequality for the function Tα,β(λ; z) are presented.

1. Introduction

The Mittag-Leffler function is defined by

(1.1) Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
(α, β ∈ C, <(α) > 0, <(β) > 0, z ∈ C).

This function was first introduced by G. Mittag-Leffler in 1903 for α = 1 and
by A. Winman in 1905 for the general case (1.1). The Mittag-Leffler func-
tion arises naturally in the solution of fractional order differential and integral
equations, and especially in the investigations of fractional generalization of
kinetic equation, random walks, Lévy flights, super-diffusive transport and in
the study of complex systems. These functions interpolate between a purely ex-
ponential law and power-law like behavior of phenomena governed by ordinary
kinetic equations and their fractional counterparts [4–6,12]. The most essential
properties of these entire functions, investigated by many mathematicians, can
be found in [1, 2].

The Wright function, denoted by Wα,β(z), was studied in [13] in connection
with the asymptotic of the number of some special partitions of the natural
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numbers. It was defined through the convergent series

(1.2) Wα,β(z) =

∞∑
n=0

zn

n! Γ(αn+ β)
(α > −1, β ∈ C, z ∈ C).

If α > −1, the series (1.2) is absolutely convergent for all z ∈ C, while for
α = −1 this series is absolutely convergent in the unit disk D := {z : |z| < 1}.
Moreover, for α > −1, Wα,β is entire function of z. The Wright functions have
been used widely in the asymptotic theory of partitions, in the Mikusinski op-
erational calculus and in the theory of integral transforms of Hankel type. Also,
the Wright function appeared as the Green function while solving some initial-
and boundary-value problems for the fractional diffusion-wave equation, i.e.,
for the linear partial integro-differential equation obtained from the classical
diffusion or wave equation by replacing the first or second order time derivative
by a fractional derivative of order α with 0 < α ≤ 2 (see, [3, 7]).

The purpose of present work is to define a new function which enable us
to study both Mittag-Leffler and Wright function simultaneously. For this we
define a new function as follows:

(1.3) Tα,β(λ; z) =

∞∑
n=0

zn

Γ(αn+ β)(λ n! + (1− λ))
.

It is easy to see that

Tα,β(0; z) = Eα,β(z)

and

Tα,β(1; z) = Wα,β(z).

Therefore this function enable us to study both Mittag-Leffler and Wright
function.

Our aim in this paper is to investigate certain types inequalities for this
new function, such as Turán-type inequalities, Lazarević-type inequalities and
Wilker-type inequalities.

In the proof of the main results we will need the following lemma, see [11],
for more details.

Lemma 1.1. Consider the power series

f(x) =
∑
n≥0

anx
n and g(x) =

∑
n≥0

bnx
n,

where for all n ≥ 0 we have an, bn ∈ R and bn > 0, and suppose that both
series converge on (−r, r), r > 0. If the sequence {an/bn}n≥0 is increasing
(decreasing), then the function x 7→ f(x)/g(x) is increasing (decreasing) too on
(0, r).
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2. Turán type inequalities for the function Tα,β(λ;x)

Our first main results are asserted in the following theorem.

Theorem 2.1. Let α, β > 0 and λ ∈ [0, 1]. Then the following assertions are
true:

(a) The function β 7→ Γ(β)Tα,β(λ;x) = Tα,β(λ;x) is log-convex on (0,∞).
(b) The following Turán type inequality

[Tα,β+1(λ;x)]2 ≤ [Tα,β(λ;x)] [Tα,β+2(λ;x)]

holds for all x ∈ (0,∞).
(c) For n ∈ N, we define the function Tnα,β(λ;x) by

Tnα,β(λ;x) = Tα,β(λ;x)−
n∑
k=0

xk

Γ(αk + β)(λ k! + (1− λ))

=

∞∑
k=n+1

xk

Γ(αk + β)(λ k! + (1− λ))
.

Then the following Turán-type inequality

Tnα,β(λ;x)Tn+2
α,β (λ;x) ≤ [Tn+1

α,β (λ;x)]2

is valid for all n ∈ N and α, β > 0 and x > 0.

Proof. (a) To prove log-convexity of β 7→ Γ(β)Tα,β(λ;x), it is enough to show
the log-convexity of each individual term and to use the fact that the sum of
log-convex function is log-convex too. Thus, we need to show that for each
n ≥ 0 we have

∂2

∂β2
log

[
Γ(β)

Γ(αn+ β)

]
= [ψ′(β)− ψ′(αn+ β)] ≥ 0,

where

ψ(x) =
Γ′(x)

Γ(x)

is the digamma function. But ψ is known to be concave, and consequently the
function β 7→ Γ(β)Tα,β(λ;x) is log-convex on (0,∞).

(b) Since the function β 7→ Tα,β(λ;x) is log-convex therefore for all β1, β2 >
0, x > 0 and µ ∈ [0, 1], we have

Tα,(µβ1+(1−µ)β2)(λ;x) ≤ [Tα,β1(λ;x)]
µ

[Tα,β2(λ;x)]
1−µ

.

Now choosing β1 = β, β2 = β + 2, µ = 1/2, we have

[Tα,β+1(λ;x)]2 ≤ [Tα,β(λ;x)] [Tα,β+2(λ;x)] .

This completes the proof of part (b).
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(c) Let us take L(k) = λ k! + (1 − λ) and φ(k) = L(k)/L(k − 1). Doing
calculation, we get

(2.1)
φ(k + 1)− φ(k) =

λ2k!(k − 1)! + λ(1− λ)(k − 1)!(k2 − k + 1)

(λ k! + (1− λ))(λ (k − 1)! + (1− λ))

≥ 0 (for all k ≥ 1).

This implies φ(k) is a non-decreasing function of k. Now, from the definition
of the function Tnα,β(λ;x), for each n ∈ N, we have

Tnα,β(λ;x) = Tn+1
α,β (λ;x) +

xn+1

Γ(α(n+ 1) + β)L(n+ 1)

and

Tn+2
α,β (λ;x) = Tn+1

α,β (λ;x)− xn+2

Γ(α(n+ 2) + β)L(n+ 2)
.

Now

Tnα,β(λ;x)Tn+2
α,β (λ;x)−

[
Tn+1
α,β (λ;x)

]2
= Tn+1

α,β (λ;x)

(
xn+1

Γ(α(n+ 1) + β)L(n+ 1)
− xn+2

Γ(α(n+ 2) + β)L(n+ 2)

)
− x2n+3

Γ(α(n+ 1) + β)L(n+ 1)Γ(α(n+ 2) + β)L(n+ 2)

=

∞∑
k=n+3

(
xk+n+1

Γ(αk + β)L(k)Γ(α(n+ 1) + β)L(n+ 1)
− xk+n+1

Γ(α(k − 1) + β)L(k − 1)Γ(α(n+ 2) + β)L(n+ 2)

)

=

∞∑
k=n+3

1

L(k)L(n+ 2)Γ(αk + β)Γ(α(n+ 2) + β)

×
(

Γ(α(n+ 2) + β)L(n+ 2)

Γ(α(n+ 1) + β)L(n+ 1)
− Γ(αk + β)L(k)

Γ(α(k − 1) + β)L(k − 1)

)
xk+n+1.

In view of non-decreasingness of φ(k) and the fact that Γ(x+a)
Γ(x) is a increasing

function of x for all a ∈ (0,∞), it is easy to see that the second term in the
bracket is a increasing function of k, while the first term is a constant. If we
show that the first term of the summation is negative then all other term will
also become negative. Now

Γ(α(n+ 3) + β)L(n+ 3)

Γ(α(n+ 2) + β)L(n+ 2)
≥ Γ(α(n+ 2) + β)L(n+ 2)

Γ(α(n+ 1) + β)L(n+ 1)

by again using the same non-decreasingness of φ(k) and increasingness of
Γ(x+a)

Γ(x) . Therefore the first term of summation is negative for k = n + 3 and

hence all the term of summation is also negative. Thus we can conclude that

Tnα,β(λ;x)Tn+2
α,β (λ;x)−

[
Tn+1
α,β (λ;x)

]2
≤ 0.
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This completes the proof of part (c). �

Remark 2.2. For λ = 0 in Theorem 2.1, we get the results proved by Mehrez
and Sitnik in [9, 10] and the results corresponding to λ = 1 are proved by
Mehrez in [8].

Theorem 2.3. Let α, β1, β2 > 0 and λ ∈ [0, 1]

a. If β2 > β1 (β2 < β1), then the function x 7→ Tα,β1
(λ;x)/Tα,β2

(λ;x) is
increasing (decreasing) on (0,∞).

b. If β2 > β1 > 1, then following Turán type inequality holds:

(2.2)
Tα,β2

(λ;x)Tα,β1−1(λ;x)− Tα,β1
(λ;x)Tα,β2−1(λ;x)

+ (β2 − β1)Tα,β1(λ;x)Tα,β2(λ;x) ≥ 0.

In particular, the Turán type inequality

(2.3) Tα,β(λ;x)Tα,β+2(λ;x)− T 2
α,β+1(λ;x) + Tα,β+1(λ;x)Tα,β+2(λ;x) ≥ 0.

Proof. Using (1.3), we have

Tα,β1
(λ;x)/Tα,β2

(λ;x)

=

∞∑
n=0

xn

Γ(αn+ β1)(λ n! + (1− λ))
/

∞∑
n=0

xn

Γ(αn+ β2)(λ n! + (1− λ))
.

In view of Lemma 1.1, we need to study the monotonicity of sequence {uk}k≥0

defined by:

(2.4) uk =
Γ(αk + β2)

Γ(αk + β1)
=

Γ(αk + β1 + (β2 − β1))

Γ(αk + β1)
(k ≥ 0);

(2.5) uk =
Γ(αk + β2)

Γ(αk + β1)
=

Γ(αk + β2)

Γ(αk + β2 + (β1 − β2))
(k ≥ 0).

If β2 > β1, then (2.4) together with the fact that Γ(x+a)
Γ(x) is a increasing

function of x in (0,∞) implies that the {uk}k≥0 is a monotonically increas-
ing sequence on (0,∞) and hence the function x 7→ Tα,β1

(λ;x)/Tα,β2
(λ;x) is

increasing in view of Lemma 1.1.

If β1 > β2, then (2.5) together with the fact that Γ(x)
Γ(x+a) is a decreasing

function of x in (0,∞) implies that the {uk}k≥0 is a monotonically decreas-
ing sequence on (0,∞) and hence the function x 7→ Tα,β1

(λ;x)/Tα,β2
(λ;x) is

increasing in view of Lemma 1.1.
It is easy to verify that

(2.6)
d

dx
Tα,β(λ;x) =

Tα,β−1(λ;x)− (β − 1)Tα,β(λ;x)

αx
.

Now using (2.6) and part a of Theorem 2.3 for β2 > β1 > 1, we have[
Tα,β1

(λ;x)

Tα,β2(λ;x)

]′
=

Tα,β1−1(x)Tα,β2
(x)− Tα,β2−1(x)Tα,β1

(x) + (β2 − β1)Tα,β1
(x)Tα,β2

(x)

αxT 2
α,β2

(x)
≥ 0.
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This completes the proof of (2.2). Finally, choosing β1 = β+ 1 and β2 = β+ 2
in the inequality (2.2), we obtain (2.3). �

3. Lazarević and Wilker-type inequalities for the function Tα,β(λ;x)

Theorem 3.1. Let α, β1, β2 > 0 be such that β1 ≥ β2 > 1. Then the following
inequality holds for all x ∈ R

(3.1) [Tα,β1
(λ;x)]

1
β1−1 ≤ [Tα,β2

(λ;x)]
1

β2−1 .

Proof. From Theorem 2.1 the function β 7→ log[Tα,β(λ;x)] is convex and hence
it follows that β 7→ log[Tα,β+a(λ;x)] − log[Tα,β(λ;x)] is increasing for each

a > 0. Thus, choosing a = 1 we obtain that indeed the function β 7→ Tα,β+1(λ;x)
Tα,β(λ;x)

is increasing on (0,∞). Now providing that β1 ≥ β2 > 1

Φ(x) =
1

β1 − 1
log[Tα,β1

(λ;x)]− 1

β2 − 1
log[Tα,β2

(λ;x)],

differentiating with respect to x

Φ′(x) =
1

αz

[
Tα,β1−1(λ;x)

Tα,β1
(λ;x)

− Tα,β2−1(λ;x)

Tα,β2
(λ;x)

]
.

Since the function β 7→ Tα,β+1(λ;x)
Tα,β(λ;x) is increasing on (0,∞) and β1 ≥ β2 > 1,

this implies

(3.2)
Tα,β1−1(λ;x)

Tα,β1
(λ;x)

≤ Tα,β2−1(λ;x)

Tα,β2
(λ;x)

.

This gives x 7→ Φ(x) is decreasing on (0,∞) and increasing on (−∞, 0). Con-
sequently Φ(x) ≤ Φ(0) = 0 for all x ∈ R. This completes the proof. �

Corollary 3.2. Let α, β1, β2 > 0 such that β1 ≥ β2 > 1. Then the following
inequality

(3.3)
Tα,β2

(λ;x)

Tα,β1
(λ;x)

+ [Tα,β2
(λ;x)]

β1−β2
β2−1 ≥ 2,

holds true for all x >∈ R and λ ∈ [0, 1].

Proof. Keeping (3.1) in mind, we get

[Tα,β2
(λ;x)]

β1−1
β2−1

Tα,β1
(λ;x)

=
Tα,β2(λ;x)

Tα,β1
(λ;x)

[Tα,β2
(λ;x)]

β1−β2
β2−1 ≥ 1.

In view of this expression and the arithmetic-geometric mean inequality, we get

1

2

[
Tα,β2(λ;x)

Tα,β1
(λ;x)

+ [Tα,β2(λ;x)]
β1−β2
β2−1

]
≥

√√√√ [Tα,β2(λ;x)]
β1−1
β2−1

Tα,β1
(λ;x)

≥ 1.
�
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4. Integral formula and integral inequality for the function
Tα,β(λ; z)

Using (1.3) it can be easily seen that

(4.1)
d

dz

[
zβTα,β+1(λ; zα)

]
= zβ−1Tα,β(λ; zα).

Integrating (4.1) between the limits 0 to x, we have

(4.2)

∫ x

0

zβ−1Tα,β(λ; zα)dz = xβTα,β+1(λ;xα).

Theorem 4.1. Let α > 0 and β > 0. Then the following integral formula
holds for all x > 0:

(4.3)

∫ x

0

[
Tα,β−1(λ; z)Tα,β+1(λ; z)

T 2
α,β−1(λ; z)

+ (1− α)
Tα,β+1(λ; z)

Tα,β(λ; z)

]
dz

= x

(
1− αTα,β+1(λ;x)

Tα,β(λ;x)

)
.

Proof. Let us consider a function

Gλα,β(z) =
Tα,β+1(λ; z)

Tα,β(λ; z)
, z > 0.

Differentiating it with respect to z and using (2.6), we obtain

(4.4)
d

dz

(
Gλα,β(z)

)
=

1

αz

[
1−Gλα,β(z)−

Gλα,β(z)

Gλα,β−1(z)

]
and consequently

(4.5)
d

dz

(
z Gλα,β(z)

)
=

1

α

[
(α− 1)Gλα,β(z) + 1−

Gλα,β(z)

Gλα,β−1(z)

]
.

Integrating both sides of the above equation over (0, x) and rearranging gives
the required result. �

Theorem 4.2. Let α > 0 and β > 1 then the following inequality

(4.6)
Tα,β+1(λ;xα)

Tα,β(λ;xα)
≤ 1

(β + 1)
+
Tα,β+2(λ;xα)

Tα,β(λ;xα)
,

holds true for all x > 0. However, the inequality (4.6) is reversed if 0 < β < 1.

Proof. Since the function

z → Tα,β(λ; z)

Tα,β+1(λ; z)

is increasing on (0,∞), therefore we have

(4.7) Tα,β+1(λ; z) ≤ Tα,β(λ; z)

β
.
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This implies that

(4.8)

∫ x

0

zβTα,β(λ; zα)dz ≤ 1

β − 1

∫ x

0

zβTα,β−1(λ; zα)dz.

Integrating by parts, we get∫ x

0

zβTα,β−1(λ; zα)dz =

∫ x

0

z2
[
zβ−2Tα,β−1(λ; zα)

]
dz

=
[
zβ+1Tα,β(λ; zα)

]x
0
− 2

∫ x

0

zβTα,β(λ; zα)dz

= xβ+1Tα,β(λ;xα)− 2

∫ x

0

zβTα,β(λ; zα)dz.

(4.9)

In view of (4.8) and (4.9) we obtain∫ x

0

zβTα,β(λ; zα)dz ≤ 1

β − 1

(
xβ+1Tα,β(λ;xα)− 2

∫ x

0

zβTα,β(λ; zα)dz

)
,

which implies that(
1 +

2

β − 1

)∫ x

0

zβTα,β(λ; zα)dz ≤ xβ+1

β − 1
Tα,β(λ;xα),

and consequently the following inequality

(4.10)

∫ x

0

zβTα,β(λ; zα)dz ≤ xβ+1

β + 1
Tα,β(λ;xα),

holds true for all β > 1 and reversed if 0 < β < 1. Moreover, on using integra-
tion by parts and (4.2), we have∫ x

0

zβTα,β(λ; zα)dz =

∫ x

0

z
(
zβ−1Tα,β(λ; zα)

)
dz

= xβ+1Tα,β+1(λ;xα)−
∫ x

0

zβTα,β+1(λ; zα)dz

= xβ+1 [Tα,β+1(λ;xα)− Tα,β+2(λ;xα)] .

In view of the above formula and (4.10), we get required result. �

Theorem 4.3. Let α > 0 and β > 0, we define the functions

(4.11) Iα,β,0(λ;x) = xβTα,β(λ;xα)

and

(4.12) Iα,β,n(λ;x) =

∫ x

0

Iα,β,n−1(λ; t)dt (n ∈ N)

if β > 1 and 0 < x < 1, then

(4.13) Iα,β,n+1(λ;x) ≤ 1

β + 1
Iα,β,n(λ;x).

In addition, the inequality (4.13) is reversed if 0 < β < 1.
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Proof. Let β > 1 and 0 < x < 1. Applying (4.10) we thus get

Iα,β,1(λ;x) =

∫ x

0

Iα,β,0(λ; t)dt =

∫ x

0

tβTα,β(λ; tα)

≤ xβ+1

β + 1
Tα,β(λ;xα)

≤ xβTα,β(λ;xα)

β + 1

=
Iα,β,0(λ;xα)

β + 1
.

Integrating both sides of the above inequality n times with respect to x yields
the desired result. �
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