References
- M. M. Dzrbasjan, Integral transforms and representations of functions in the complex domain (Russian), Izdat. "Nauka", Moscow, 1966.
- A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. 3, New York, McGraw-Hill, 1955.
- R. Gorenflo, Y. Luchko, and F. Mainardi, Analytic properties and applications of Wright functions, Frac. Cal. Appl. Anal. 2 (1999), no. 4, 383-414.
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. https://doi.org/10.1142/9789812817747
- K. R. Lang, Astrophysical Formulae, Vol. 1: Radiation, Gas Processes and High-energy Astrophysics, 3rd edition, Revised edition, Springer-Verlag, New York, 1999.
- K. R. Lang, Astrophysical Formulae, Vol. 2: Space, Time, Matter and Cosmology, Springer- Verlag, New York, 1999.
- F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett. 9 (1996), no. 6, 23-28. https://doi.org/10.1016/0893-9659(96)00089-4
- K. Mehrez, Functional inequalities for the Wright functions, Integral Transforms Spec. Funct. 28 (2017), no. 2, 130-144. https://doi.org/10.1080/10652469.2016.1254628
- K. Mehrez and S. M. Sitnik, Functional inequalities for the Mittag-Leffler functions, Results Math. 72 (2017), no. 1-2, 703-714. https://doi.org/10.1007/s00025-017-0664-x
- K. Mehrez and S. M. Sitnik, Turan type inequalities for classical and generalized Mittag-Leffler functions, Anal. Math. 44 (2018), no. 4, 521-541. https://doi.org/10.1007/s10476-018-0404-9
- S. Ponnusamy and M. Vuorinen, Asymptotic expansions and inequalities for hypergeometric functions, Mathematika 44 (1997), no. 2, 278-301. https://doi.org/10.1112/ S0025579300012602
- R. K. Saxena, A. M. Mathai, and H. J. Haubold, On fractional kinetic equations, Astrophysics and Space Science 282 (2002), 281-287. https://doi.org/10.1023/A:1021175108964
- E. M. Wright, On the Coefficients of Power Series Having Exponential Singularities, J. London Math. Soc. 8 (1933), no. 1, 71-79. https://doi.org/10.1112/jlms/s1-8.1.71