References
-
D. F. Anderson and A. Badawi, On
$\phi$ -Prufer rings and$\phi$ -Bezout rings, Houston J. Math. 30 (2004), no. 2, 331-343. -
D. F. Anderson and A. Badawi, On
$\phi$ -Dedekind rings and$\phi$ -Krull rings, Houston J. Math. 31 (2005), no. 4, 1007-1022. - D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56. https://doi.org/10.1216/JCA-2009-1-1-3
- A. Badawi, Pseudo-valuation rings, in Commutative ring theory (Fes, 1995), 57-67, Lecture Notes in Pure and Appl. Math., 185, Dekker, New York, 1997.
- A. Badawi, On divided commutative rings, Comm. Algebra 27 (1999), no. 3, 1465-1474. https://doi.org/10.1080/00927879908826507
-
A. Badawi, On
$\phi$ -pseudo-valuation rings, in Advances in commutative ring theory (Fez, 1997), 101-110, Lecture Notes in Pure and Appl. Math., 205, Dekker, New York, 1999. -
A. Badawi, On
$\phi$ -pseudo-valuation rings. II, Houston J. Math. 26 (2000), no. 3, 473-480. -
A. Badawi, On
$\phi$ -chained rings and$\phi$ -pseudo-valuation rings, Houston J. Math. 27 (2001), no. 4, 725-736. - A. Badawi, Pseudo-valuation domains: a survey, in Mathematics & mathematics education (Bethlehem, 2000), 38-59, World Sci. Publ., River Edge, NJ, 2002.
- A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31 (2003), no. 4, 1669-1677. https://doi.org/10.1081/AGB-120018502
- A. Badawi, D. F. Anderson, and D. E. Dobbs, Pseudo-valuation rings, Lecture Notes Pure Appl. Math. 185, 57-67, Marcel Dekker, New York/Basel, 1997.
- C. Bakkari, S. Kabbaj, and N. Mahdou, Trivial extensions defined by Prufer conditions, J. Pure Appl. Algebra 214 (2010), no. 1, 53-60. https://doi.org/10.1016/j.jpaa.2009.04.011
- M. D'Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507-519. https://doi.org/10.1016/j.jalgebra.2005.12.023
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Amalgamated algebras along an ideal, in Commutative algebra and its applications, 155-172, Walter de Gruyter, Berlin, 2009.
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, Properties of chains of prime ideals in an amalgamated algebra along an ideal, J. Pure Appl. Algebra 214 (2010), no. 9, 1633-1641. https://doi.org/10.1016/j.jpaa.2009.12.008
- M. D'Anna, C. A. Finocchiaro, and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836-1851. https://doi.org/10.1080/00927872.2015.1033628
- M. D'Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45 (2007), no. 2, 241-252. https://doi.org/10.1007/s11512-006-0038-1
- M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443-459. https://doi.org/10.1142/S0219498807002326
- D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67 (1976), no. 2, 353-363. http://projecteuclid.org/euclid.pjm/1102817497 https://doi.org/10.2140/pjm.1976.67.353
-
A. El Khalfi, H. Kim, and N. Mahdou, Amalgamated algebras issued from
$\phi$ -chained rings and$\phi$ -pseudo valuation rings, To appear in "Bull. Iranian Math. Soc."; https://doi.10.1007/s41980-020-00461-y - S. Glaz, Commutative coherent rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989. https://doi.org/10.1007/BFb0084570
- J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75 (1978), no. 1, 137-147. http://projecteuclid.org/euclid.pjm/1102810151 https://doi.org/10.2140/pjm.1978.75.137
- J. A. Huckaba, Commutative rings with zero divisors, Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, Inc., New York, 1988.
- S.-E. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937-3953. https://doi.org/10.1081/AGB-200027791
- H. Kim and Y. S. Park, Some remarks on pseudo-Krull domains, Comm. Algebra 33 (2005), no. 6, 1745-1751. https://doi.org/10.1081/AGB-200063361
-
H. Kim and F. Wang, On
$\phi$ -strong Mori rings, Houston J. Math. 38 (2012), no. 2, 359-371. - M. B. Martin and M. Zafrullah, t-linked overrings of Noetherian weakly factorial domains, Proc. Amer. Math. Soc. 115 (1992), no. 3, 601-604. https://doi.org/10.2307/ 2159205
- S. Oda, On pseudo-Krull domains, Math. Rep. Toyama Univ. 10 (1987), 85-106.
- G. Picavet and M. Picavet-L'Hermitte, When is length a length function?, J. Algebra 293 (2005), no. 2, 561-594. https://doi.org/10.1016/j.jalgebra.2005.08.014
- M. Tamekkante, K. Louartiti, and M. Chhiti, Chain conditions in amalgamated algebras along an ideal, Arab. J. Math. (Springer) 2 (2013), no. 4, 403-408. https://doi.org/10.1007/s40065-013-0075-0