DOI QR코드

DOI QR Code

나노박막 전사 방법 및 계면 파괴 역학

Nanofilm Transfer Methods and Interfacial Fracture Mechanics

  • 강수민 (한국과학기술원 기계공학과) ;
  • 김택수 (한국과학기술원 기계공학과)
  • Kang, Sumin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2020.08.25
  • 심사 : 2020.09.29
  • 발행 : 2020.09.30

초록

기능성 나노박막을 손상 없이 목표기판으로 옮기는 전사 기술은 나노박막 기반의 차세대 응용 제품 개발을 위한 초석이다. 본 논문에서는 최근 나노박막 전사의 연구 동향을 박막-기판 계면의 박리 원리에 따라 습식 식각 전사, 전기화학적 박리, 기계식 전사 방법 세 가지로 분류하여 간단하게 살펴볼 것이다. 더 나아가, 손쉽고, 기판 재활용이 가능하며, 광범위한 적용 가능성을 가지고 있어 유망 기술로 간주되는 기계식 전사 방법에 대하여 파괴 역학적 관점에 초점을 맞추어 다룰 것이다. 마지막으로, 나노박막의 기계식 전사 방법의 기술 성숙도를 향상시키기 위한 향후 도전 과제와 방향성에 대하여 고찰하고자 한다.

Transferring of functional nanofilms onto target substrates is a cornerstone to developing nanofilm-based nextgeneration applications. In this work, we provide a brief review of recent advances on nanofilm transfer methods by categorizing them into the following three methods: wet-etching transfer, electrochemical delamination, and mechanical transfer. Furthermore, the mechanical transfer method, which is regarded as a promising technology owing to its facile, substrate recyclable, and widely applicable process, is overviewed by focusing on fracture mechanics approaches. Finally, the perspectives and challenges for future development of the mechanical transfer method are discussed.

키워드

참고문헌

  1. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-Dimensional Gas of Massless Dirac Fermions in Graphene", Nature, 438, 197 (2005). https://doi.org/10.1038/nature04233
  3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene", Nano Lett., 8(3), 902 (2008). https://doi.org/10.1021/nl0731872
  4. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene", Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  5. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, M. J. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes", Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  6. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene Photonics and Optoelectronics", Nat. Photonics., 4, 611 (2010). https://doi.org/10.1038/nphoton.2010.186
  7. J. H. Ahn, H. Lee, and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.2.001
  8. S. K. Lee, K. Rana, and J. H. Ahn, "Graphene Films for Flexible Organic and Energy Storage Devices", J. Phys. Chem. Lett., 4, 831 (2013). https://doi.org/10.1021/jz400005k
  9. D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. Hyeon, and D.-H. Kim, "Multifuntional Wearable Devices for Diagonosis and Therapy of Movement Disorders", Nat. Nanotech., 9, 397 (2014). https://doi.org/10.1038/nnano.2014.38
  10. J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S. T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, and D.-H. Kim, "Stretchable Silicon Nanoribbon Electronics for Skin Prosthesis", Nat. Commun., 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
  11. Y. H. Ko, K. Choi, S. W. Kim, D. Y. Yu, J. Bang, and T. S. Kim, "Trends of Researches and Technologies of Electronic Packaging Using Graphene", J. Microelectron. Packag. Soc., 23(2), 1 (2016). https://doi.org/10.6117/kmeps.2016.23.2.001
  12. H. Jang, Y. J. Park, X. Chen, T. Das, M. S. Kim, and J. H. Ahn, "Graphene-Based Flexible and Stretchable Electronics", Adv. Mater., 28, 4184 (2016). https://doi.org/10.1002/adma.201504245
  13. H. E. Lee, J. H. Shin, J. H. Park, S. K. Hong, S. H. Park, S. H. Lee, J. H. Lee, I. S. Kang, and K. J. Lee, "Micro Light Emitting Diodes for Display and Flexible Biomedical Applications", Adv. Funct. Mater., 29, 1808075 (2019). https://doi.org/10.1002/adfm.201808075
  14. Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, "Large-Area Vapor-Phase Growth and Characterization of $MoS_2$ Atomic Layers on a $SiO_2$ Substrate", Small, 8(7), 966 (2012). https://doi.org/10.1002/smll.201102654
  15. Y. Nam, H. O. Kim, S. H. Cho, and S. H. K. Park, "Effect of Hydrogen Diffusion in an In-Ga-Zn-O Thin Film Transistor with an Aluminum Oxide Gate Insulator on Its Electrical Properties", RCS Adv., 8, 5622 (2018).
  16. B. Deng, Z. Liu, and H. Peng, "Toward Mass Production of CVD Graphene Films", Adv. Mater., 31, 1800996 (2019). https://doi.org/10.1002/adma.201800996
  17. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New Approaches to Nanofabrication: Molding, Printing, and Other Techniques", Chem. Rev., 105, 1171 (2005). https://doi.org/10.1021/cr030076o
  18. M. Konagai, M. Sugimoto, and K. Takahashi, "High Efficiency GaAs Thin Film Solar Cells by Peeled Film Technology", J. Cryst. Growth, 45, 277 (1978). https://doi.org/10.1016/0022-0248(78)90449-9
  19. J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, "GaAs Photovoltaics and Optoelectronics Using Releasable Multilayer Epitaxial Assemblies", Nature, 465, 329 (2010). https://doi.org/10.1038/nature09054
  20. C. W. Cheng, K. T. Shiu, N. Li, S. J. Han, L. Shi, and D. K. Sadana, "Epitaxial Lift-Off Process for Gallium Arsenide Substrate Reuse and Flexible Electronics", Nat. Commun., 4, 1577 (2013). https://doi.org/10.1038/ncomms2583
  21. N. K. Mahenderkar, Q. Chen, Y. C. Liu, A. R. Duchild, S. Hofheins, E. Chason, and J. A. Switzer, "Epitaxial Liff-Off of Electrodeposited Single-Crystal Gold Foils for Flexible Electronics", Science, 355, 1203 (2017). https://doi.org/10.1126/science.aam5830
  22. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes", Nano Lett., 9(12), 4359 (2009). https://doi.org/10.1021/nl902623y
  23. K. K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. Shi, H. Zhang, C. S. Lai, and L. J. Li, "Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates", Nano Lett., 12(3), 1538 (2012). https://doi.org/10.1021/nl2043612
  24. S. Fan, Q. A. Vu, M. D. Tran, S. Adhikari, and Y. H. Lee, "Transfer Assembly for Two-Dimensional van der Waals Heterostructures", 2D Mater., 7, 022005 (2020). https://doi.org/10.1088/2053-1583/ab7629
  25. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, "The Effect of Chemical Residues on the Physical and Electrical Properties of Chemical Vapor Deposited Graphene Transferred to $SiO_2$", Appl. Phys. Lett., 99, 122108 (2011). https://doi.org/10.1063/1.3643444
  26. H. H. Kim, B. Kang, J. W. Suk, N. Li, K. S. Kim, R. S. Ruoff, W. H. Lee, and K. Cho, "Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons", ACS Nano, 9(5), 4726 (2015). https://doi.org/10.1021/nn5066556
  27. H. V. Ngoc, Y. Qian, S. K. Han, and D. J. Kang, "PMMAEtching-Free Transfer of Wafer-Scale Chemical Vapor Deposition Two-Dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method", Sci. Rep., 6, 33096 (2016). https://doi.org/10.1038/srep33096
  28. Z. Zhang, J. Du, D. Zhang, H. Sun, L. Yin, L. Ma, J. Chen, D. Ma, H. M. Cheng, and W. Ren, "Rosin-Enabled Ultraclean and Damage-Free Transfer of Graphene for Large-Area Flexible Organic Light-Emitting Diodes", Nat. Commun., 8, 14560 (2017). https://doi.org/10.1038/ncomms14560
  29. W. S. Leong, H. Wang, J. Yeo, F. J. Martin-Martinez, A. Zubair, P. C. Shen, Y. Mao, T. Palacio, M. J. Buehler, J. Y. Hong, and J. Kong, "Paraffin-Enabled Graphene Transefer", Nat. Commun., 10, 867 (2019). https://doi.org/10.1038/s41467-019-08813-x
  30. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Rollto-Roll Production of 30-Inch Graphene Films for Transparent Electrodes", Nat. Nanotech., 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  31. B. Jang, C. H. Kim, S. T. Choi, K. S. Kim, K. S. Kim, H. J. Lee, S. Cho, J. H. Ahn, and J. H. Kim, "Damage Mitigation in Roll-to-Roll Transfer of CVD-Graphene to Flexible Substrates", 2D Mater., 4, 024002 (2017). https://doi.org/10.1088/2053-1583/aa57fa
  32. Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, "Electrochemical Delamination of CVD-Grown Graphene Film: Toward the Recyclable Use of Copper Catalyst", ACS Nano, 5(12), 9927 (2011). https://doi.org/10.1021/nn203700w
  33. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, and H. M. Cheng, "Repeated Growth and Bubbling Transfer of Graphene with Millimetre-Size Single-Crystal Grains Using Platinum", Nat. Commun., 3, 699 (2012). https://doi.org/10.1038/ncomms1702
  34. Z. Tang, C. Neumann, A. Winter, and A. Turchanin, "Electrochemical Delamination Assisted Transfer of Molecular Nanosheets", Nanoscale, 12, 8656, (2020). https://doi.org/10.1039/D0NR01084G
  35. B. Deng, P. C. Hsu, G. Chen, B. N. Chandrashekar, L. Liao, Z. Ayitimuda, J. Wu, Y. Guo, L. Lin, Y. Zhou, M. Aisijiang, Q. Xie, Y. Cui, Z. Liu, and H. Peng, "Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes", Nano Lett., 15(6), 4206 (2015). https://doi.org/10.1021/acs.nanolett.5b01531
  36. Y. Gao, Z. Liu, D. M. Sun, L. Huang, L. P. Ma, L. C. Yin, T. Ma, Z. Zhang, X. L. Ma, L. M. Peng, H. M. Cheng, and W. Ren, "Large-Area Synthesis of High-Quaility and Uniform Monolayer $WS_2$ on Reusable Au Foils", Nat. Commun., 6, 8569 (2015). https://doi.org/10.1038/ncomms9569
  37. M. M. Tavakoli, G. Azzellino, M. Hempel, A. Y. Lu, F. J. Martin-Martinez, J. Zhao, J. Yeo, T. Palacios, M. J. Buehler, and J. Kong, "Synergistic Roll-to-Roll Transfer and Doping of CVD-Graphene Using Parylene for Ambient-Stable and Ultra-Lightweight Photovoltaics", Adv. Funct. Mater., 31, 2001924 (2020).
  38. C. T. Cherian, F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, and B. Ozyilmaz, "'Bubble-Free' Electrochemical Delamination of CVD Graphene Films", Small, 11(2), 189 (2015). https://doi.org/10.1002/smll.201402024
  39. T. Yoon, W. C. Shin, T. Y. Kim, J. H. Mun, T. S. Kim, and B. J.Cho, "Direct Measurement of Adhesion Energy of Monolayer Graphene As-Grown on Copper and Its Application to Renewable Transfer Process", Nano Lett., 12(3), 1448 (2012). https://doi.org/10.1021/nl204123h
  40. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer Printing by Kinetic Control of Adhesion to an Elastometric Stamp", Nat. Mater., 5, 33 (2006). https://doi.org/10.1038/nmat1532
  41. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes III, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, "A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics", Nature, 454, 748 (2008). https://doi.org/10.1038/nature07113
  42. S. Kang, J. B. Pyo, and T. S. Kim, "Layer-by-Layer Assembly of Free-Standing Nanofilms by Controlled Rolling", Langmuir, 34(20), 5831 (2018). https://doi.org/10.1021/acs.langmuir.8b01063
  43. A. L. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R. Lv, S. Feng, A. D. Long, T. Hayashi, Y. A. Kim, M. Endo, H. R. Gutierrez, N. R. Pradhan, L. Balicas, T. E. Mallouk, F. Lopez-Urias, H. Terrones, and M. Terrones, "Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers", ACS Nano, 7(6), 5235 (2013). https://doi.org/10.1021/nn400971k
  44. K. Kang, K. H. Lee, Y. Han, H. Gao, S. Xie, D. A. Muller, and J. Park, "Layer-by-Layer Assembly of Two-Dimensional Materials into Wafer-Scale Heterostructures", Nature, 550, 229 (2017). https://doi.org/10.1038/nature23905
  45. J. S. Bunch and M. L. Dunn, "Adhesion Mechanics of Graphene Membranes", Solid State Commun", 152, 1359 (2012). https://doi.org/10.1016/j.ssc.2012.04.029
  46. S. P. Koenig, N. G. Boddeti, M. L. Dunn, and S. Bunch, "Ultrastrong Adhesion of Graphene Membranes", Nat. Nanotech., 6, 543 (2011). https://doi.org/10.1038/nnano.2011.123
  47. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, "Deterministic Transfer of Two-Dimensional Materials by All-Dry Viscoelastic Stamping", 2D Mater., 1, 011002 (2014). https://doi.org/10.1088/2053-1583/1/1/011002
  48. S. R. Na, J. W. Suk, L. Tao, D. Akinwande, R. S. Ruoff, R. Huang, and K. M. Liechti, "Selective Mechanical Transfer of Graphene from Seed Copper Foil Using Rate Effects", ACS Nano, 9(2), 1325 (2015). https://doi.org/10.1021/nn505178g
  49. S. R. Na, S. Rahimi, L. Tao, H. Chou, S. K. Ameri, D. Akinwande, and K. M. Liechti, "Clean Graphene Interfaces by Selective Dry Transfer for Large Area Silicon Integration", Nanoscale, 8, 7523 (2016). https://doi.org/10.1039/C5NR06637A
  50. H. Xin, Q. Zhao, D. Chen, and W. Li, "Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene" J. Micro Nano-Manuf., 6(3), 031004 (2018).
  51. J. Seo, C. Kim, B. S. Ma, T. I. Lee, J. H. Bong, J. G. Oh, B. J. Cho, and T. S. Kim, "Direct Graphene Transfer and Its Application to Transfer Printing Using Mechanically Controlled, Large-Area Graphene/Copper Freestanding Layer", Adv. Funct. Mater., 28, 1707102 (2018). https://doi.org/10.1002/adfm.201707102
  52. X. Feng, M. A. Meitl, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, "Competing Fracture in Kinetically Controlled Transfer Printing", Laungmuir, 23(25), 12555 (2007). https://doi.org/10.1021/la701555n
  53. M. Deruelle, L. Leger, and M. Tirrell, "Adhesion at the Solid-Elastomer Interface: Influence of the Interfacial Chains", Macromolecules, 28, 7419 (1995). https://doi.org/10.1021/ma00126a021
  54. R. Saeidpourazar, R. Li, Y. Li, M. D. Sangid, C. Lu, Y. Huang, J. A. Rogers, and P. M. Ferreira, "Laser-Driven Micro Transfer Placement of Prefabricated Microstructures", J. Microelectromech. Syst., 21(5), 1049 (2012). https://doi.org/10.1109/JMEMS.2012.2203097
  55. M. K. Choi, I. Park, D. C. Kim, E. Joh, O. K. Park, J. Kim, M. Kim, C. Choi, J. Yang, K. W. Cho, J. H. Hwang, J. M. Nam, T. Hyeon, J. H. Kim, and D.-H. Kim, "Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System", Adv. Funct. Mater., 25, 7109 (2015). https://doi.org/10.1002/adfm.201502956
  56. R. Li, Q. Zhang, E. Zhao, J. Li, Q. Gu, and P. Gao, "Etchingand Intermediate-Free Graphene Dry Transfer onto Polymeric Thin Films with High Piezoresistive Gauge Factors", J. Mater. Chem., 7, 13032 (2019).
  57. T. H. Kim, A. Carlson, J. H. Ahn, S. M. Won, S. Wang, Y. Huang, and J. A. Rogers, "Kinetically Controlled, Adhesiveless Transfer Printing Using Microstructured Stamps", Appl. Phys. Lett., 94(11), 113502 (2009). https://doi.org/10.1063/1.3099052
  58. S. Kim, J. Wu, A. Carlson, S. H. Jin, A. Kovalsky, P. Glass, Z. Liu, N. Ahmed, S. L. Elgan, W. Chen, P. M. Ferreira, M. Sitti, Y. Huang, and J. A. Rogers, "Microstructured Elastomeric Surfaces with Reversible Adhesion and Examples of Their Use in Deterministic Assembly by Transfer Printing", Proc. Natl. Acad. Sci. U.S.A., 107(40), 17095 (2010). https://doi.org/10.1073/pnas.1005828107
  59. A. Carlson, S. Wang, P. Elvikis, P. M. Ferreira, Y. Huang, and J. A. Rogers, "Active, Programmable, Elastomeric Surfaces with Tunable Adhesion for Deterministic Assembly by Transfer Printing", Adv. Funct. Mater., 22, 4476 (2012). https://doi.org/10.1002/adfm.201201023
  60. B. Yoo, S. Cho, S. Seo, and J. Lee, "Elastomeric Angled Microflaps with Reversible Adhesion for Transfer-Printing Semiconductor Membranes onto Dry Surfaces", ACS Appl. Mater. Interfaces., 6(21), 19247 (2014). https://doi.org/10.1021/am505286b
  61. C. Linghu, C. Wang, N. Cen, J. Wu, Z. Lai, and J. Song, "Rapidly Tunable and Highly Reversible Bio-Inspired Dry Adhesion for Transfer Printing in Air and a Vacuum", Soft Matter, 15, 30 (2019). https://doi.org/10.1039/C8SM01996G
  62. K. Autumm, A. Dittmore, D. Santos, M. Spenko, and M. Cutkosky, "Frictional Adhesion: a New Angle on Gecko Attachment", J. Exp. Biol., 209, 3569 (2006). https://doi.org/10.1242/jeb.02486
  63. A. D. Lees and J. Hardie, "The Organs of Adhesion in the Aphid Megoura Viciae", J. Exp. Biol., 136, 209 (1988). https://doi.org/10.1242/jeb.136.1.209
  64. A. G. Evans, B. J. Dalgleish, M. He, and J. W. Hutchinson, "On Crack Path Selection and the Interface Fracture Energy in Bimaterial Systems", Acta Metall., 37(12), 3249 (1989). https://doi.org/10.1016/0001-6160(89)90197-1
  65. A. G. Evans, M. Ruhle, B. J. Dalgleish, and P. G. Charalambides, "The Fracture Energy of Bimaterial Interfaces", Metall. Trans. A, 21(9), 2419 (1990). https://doi.org/10.1007/BF02646986
  66. A. Carlson, H. J. Kim-Lee, J. Wu, P. Elvikis, H. Cheng, A. Kovalsky, S. Elgan, Q. Yu, P. M. Ferreira, Y. Huang, K. T. Turner, and J. A. Rogers, "Shear-Enhanced Adhesiveless Transfer Printing for Use in Deterministic Materials Assembly", Appl. Phys. Lett., 98(26), 264104 (2011). https://doi.org/10.1063/1.3605558
  67. P. Sen, Y. Xiong, Q. Zhang, S. Park, W. You, H. Ade, M. W. Kudenov, and B. T. O'Connor, "Shear Enhanced Transfer Printing of Conducting Polymer Thin Films", ACS Appl. Mater. Interfaces., 10(37), 31560 (2018). https://doi.org/10.1021/acsami.8b09968
  68. H. Cheng, J. Wu, Q. Yu, H. J. Kim-Lee, A. Carlson, K. T. Turner, K. C. Hwang, Y. Huang, and J. A. Rogers, "An Analytical Model for Shear-Enhanced Adhesiveless Transfer Printing", Mech. Res. Commun., 43, 46 (2012). https://doi.org/10.1016/j.mechrescom.2012.02.011
  69. H. W. Jang and W. S. Kim, "Shear-Induced Dry Transfer of Reduced Graphene Oxide Thin Film via Roll-to-Roll Printing", Appl. Phys. Lett., 108(9), 091601 (2016). https://doi.org/10.1063/1.4943083
  70. X. Ma, Q. Liu, D. Xu, Y. Zhu, S. Kim, Y. Cui, L. Zhong, and M. Liu, "Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials", Nano Lett., 17(11), 6961 (2017). https://doi.org/10.1021/acs.nanolett.7b03449
  71. G. J. M. Fechine, I. Martin-Frenandez, G. Yiapanis, R. Bentini, E. S. Kulkarni, R. V. Bof de Oliveria, X. Hu, I. Yarovsky, A. H. Castro Neto, and B. Ozyilmaz, "Direct Dry Transfer of Chemical Vapor Deposition Graphene to Polymeric Substrates", Carbon, 83, 224 (2015). https://doi.org/10.1016/j.carbon.2014.11.038
  72. W. Jung, D. Kim, M. Lee, S. Kim, J. H. Kim, and C. S. Han, "Ultraconformal Contact Transfer of Monolayer Graphene on Metal to Various Substrates", Adv. Mater., 26, 6394 (2014). https://doi.org/10.1002/adma.201400773
  73. J. Kim, H. Park, J. B. Hannon, S. W. Bedell, K. Fogel, D. K. Sadana, and C. Dimitrakopoulos, "Layer-Resolved Graphene Transfer via Engineered Strain Layers", Science, 342, 833 (2013). https://doi.org/10.1126/science.1242988
  74. C. H. Lee, D. R. Kim, and X. Zheng, "Fabrication of Nanowire Electronics on Nonconventional Substrates by Water- Assisted Transfer Printing", Nano Lett., 11(8), 3435 (2011). https://doi.org/10.1021/nl201901z
  75. C. H. Lee, D. R. Kim, I. S. Cho, N. William, Q. Wang, and X. Zheng, "Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates", Sci. Rep., 2, 1000 (2012). https://doi.org/10.1038/srep01000
  76. D. S. Wie, Y. Zhnag, M. K. Kim, B. Kim, S. Park, Y. J. Kim, P. P. Irazoqui, X. Zheng, B. Xu, and C. H. Lee, "Wafer-Recyclable, Environment-Friendly Transfer Printing for Large- Scale Thin-Film Nanoelectronics", Proc. Natl. Acad. Sci. U.S.A., 115(31), E9236 (2018).
  77. P. Gupta, P. D. Dongare, S. Grover, S. Dubey, H. Mamgain, A. Bhattacharya, and M. M. Deshmukh, "A Facile Process for Soak-and-Peel Delamination of CVD Graphene from Substrates Using Water", Sci. Rep., 4, 3882 (2014).
  78. B. N. Chandrashekar, B. Deng, A. S. Smitha, Y. Chen, C. Tan, H. Zhang, H. Peng, and Z. Liu, "Roll-to-Roll Green Transfer of CVD Graphene onto Plastic for a Transparent and Flexble Triboelectric Nanogenerator", Adv. Mater., 27, 5210 (2015). https://doi.org/10.1002/adma.201502560
  79. A. Gurarslan, Y. Yu, L. Su, Y. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang, and L. Cao, "Surface-Energy-Assisted Perfect Transfer of Centimeter-Scale Monolayer and Few- Layer MoS$_2$ Films onto Arbitrary Substrates", ACS Nano, 8(11), 11522 (2014). https://doi.org/10.1021/nn5057673
  80. S. M. Shinde, T. Das, A. T. Hoang, B. K. Sharma, X. Chen, and J. H. Ahn, "Surface-Functionalization-Mediated Direct Transfer of Molybdenum Disulfide for Large-Area Flexible Devices", Adv. Funct. Mater., 28, 1706231 (2018). https://doi.org/10.1002/adfm.201706231
  81. X. Yang, X. Li, Y. Deng, Y. Wang, G. Liu, C. Wei, H. Li, Z. Wu, Q. Zheng, Z. Chen, Q. Jiang, H. Lu, and J. Zhu, "Ethanol Assisted Transfer of Clean Assembly of 2D Building Blocks and Suspended Structures", Adv. Funct. Mater., 29, 1902427 (2019). https://doi.org/10.1002/adfm.201902427
  82. C. H. Lee, J. H. Kim, C. Zou, I. S. Cho, J. M. Weisse, W. Nemeth, Q. Wang, A. C. T. van Duin, T. S. Kim, and X. Zheng, "Peel-and-Stick: Mechanism Study for Efficient Fabrication of Flexible/Transparent Thin Film Electronics", Sci. Rep., 3, 2917 (2013). https://doi.org/10.1038/srep02917
  83. E. P. Guyer and R. H. Dauskardt, "Fracture of Nanoporous Thin-Film Glasses", Nat. Mater., 3, 53 (2004). https://doi.org/10.1038/nmat1037
  84. Y. Zhang, Q. Liu, and B. Xu, "Liquid-Assisted, Etching-Free, Mechanical Peeling of 2D Materials", Extreme Mech. Lett., 16, 33 (2017). https://doi.org/10.1016/j.eml.2017.08.005
  85. T. Yoon, J. H. Kim, J. H. Choi, D. Y. Jung, I. J. Park, S. Y. Choi, N. S. Cho, J. I. Lee, Y. D. Kwon, S. Cho, and T. S. Kim, "Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and Stretchable Devices", ACS Nano, 10(1), 1539 (2016). https://doi.org/10.1021/acsnano.5b07098
  86. J. D. Buron, D. H. Petersen, P. Boggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, "Graphene Conductance Uniformity Mapping", Nano Lett., 12(10), 5074 (2012). https://doi.org/10.1021/nl301551a
  87. T. Yoon, S. Kang, T. Y. Kang, and T. S. Kim, "Detection of Graphene Cracks by Electromagnetic Induction, Insensitive to Doping Level", Comput. Model. Eng. Sci., 120(2), 351 (2019).
  88. A. Kamer, K. Larson-Smith, L. S. C. Pingree, and R. H. Dauskardt, "Adhesion and Degradation of Hard Coatings on Poly (Methyl Methacrylate) Substrates", Thin Solid Films, 519(6), 1907 (2011). https://doi.org/10.1016/j.tsf.2010.08.116
  89. T. Yoon, W. S. Jo, and T. S. Kim, "High-Yield Etching-Free Transfer of Graphene: a Fracture Mechanics Approach", J. Microelectron. Packag. Soc., 21(2), 59 (2014). https://doi.org/10.6117/kmeps.2014.21.2.059
  90. J. Shim, S. H. Bae, W. Kong, D. Lee, K. Qiao, D. Nezich, Y. J. Park, R. Zhao, S. Sundaram, X. Li, H. Yeon, C. Choi, H. Kum, R. Yue, G. Zhou, Y. Ou, K. Lee, J. Moodera, X. Zhao, J. H. Ahn, C. Hinkle, A. Ougazzaden, and J. Kim, "Controlled Crack Propagation for Atomic Precision Handling of Wafer-Scale Two-Dimensional Materials", Science, 362, 665 (2018). https://doi.org/10.1126/science.aat8126
  91. S. Kang, T. Yoon, S. Kim, and T. S. Kim, "Role of Crack Deflection on Rate Dependent Mechanical Transfer of Multilayer Graphene and Its Application to Transparent Electrodes", ACS Appl. Nano Mater., 2(4), 1980 (2019). https://doi.org/10.1021/acsanm.9b00014