DOI QR코드

DOI QR Code

Mucopolysaccharidosis Type III: review and recent therapies under investigation

  • Lee, Jun Hwa (Department of Pediatrics, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine)
  • Received : 2020.10.03
  • Accepted : 2020.10.31
  • Published : 2020.10.31

Abstract

Mucopolysaccharidosis type III (MPS III or Sanfilippo syndrome) is a multisystem lysosomal storage disease that is inherited in an autosomal recessive manner. It consists of four subtypes (MPS IIIA, B, C, and D), each characterized by the deficiency of different enzymes that catalyze the metabolism of the glycosaminoglycan heparan sulfate at the lysosomal level. The typical clinical manifestation of MPS III includes progressive central nervous system (CNS) degeneration with accompanying systemic manifestations. Disease onset is typically before the age of ten years and death usually occurs in the second or third decade due to neurological regression or respiratory tract infections. However, there is currently no treatment for CNS symptoms in patients with MPS III. Invasive and non-invasive techniques that allow drugs to pass through the blood brain barrier and reach the CNS are being tested and have proven effective. In addition, the application of genistein treatment as a substrate reduction therapy is in progress.

Keywords

References

  1. Wagner VF, Northrup H. Mucopolysaccharidosis Type III. $GeneReviews^{(R)}$ [Internet]. Seattle: University of Washington; 2019 (updated on 2019 Sep 19). https://www.ncbi.nlm.nih.gov/books/NBK546574/
  2. Bellettato CM, Scarpa M, Bellettato CM. Possible strategies to cross the blood-brain barrier. Ital J Pediatr 2018;44(S2):S131.
  3. Zelei T, Csetneki K, Voko Z, Siffel C, Zelei T. Epidemiology of Sanfilippo syndrome: results of a systematic literature review. Orphanet J Rare Dis 2018;13:53. https://doi.org/10.1186/s13023-018-0796-4
  4. Andrade F, Aldamiz-Echevarria L, Llarena M, Couce ML. Sanfilippo syndrome: Overall review. Pediatr Int 2015;57:331-8. https://doi.org/10.1111/ped.12636
  5. Kim JH, Chi YH, Kim GH, Yoo HW, Lee JH. Long-term clinical course of a patient with mucopolysaccharidosis type IIIB. Korean J Pediatr 2016;59(S1):S37-S40. https://doi.org/10.3345/kjp.2016.59.11.S37
  6. Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des 2014;20:1422-49. https://doi.org/10.2174/13816128113199990463
  7. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005;2:3-14. https://doi.org/10.1602/neurorx.2.1.3
  8. King B, Setford ML, Hassiotis S, Trim PJ, Duplock S, Tucker JN, et al. Low-dose, continual enzyme delivery ameliorates some aspects of established brain disease in a mouse model of a childhood-onset neurodegenerative disorder. Exp Neurol 2016;278:11-21. https://doi.org/10.1016/j.expneurol.2015.11.013
  9. Wijburg FA, Whitley CB, Muenzer J, Gasperini S, Del Toro M, Muschol N, et al. Intrathecal heparan-N-sulfatase in patients with Sanfilippo syndrome type A: A phase IIb randomized trial. Mol Genet Metab 2019;126:121-130. https://doi.org/10.1016/j.ymgme.2018.10.006
  10. Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Intl J Nanomed 2014;9:2241-57.
  11. Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem 2014;6:11-24. https://doi.org/10.4137/PMC.S13384
  12. Hersh DS, Wadajkar AS, Roberts N, Perez JG, Connolly NP, Frenkel V, et al. Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des 2016;22:1177-93. https://doi.org/10.2174/1381612822666151221150733
  13. Grabrucker A, Chhabra R, et al. Nanoparticles as blood-brain barrier permeable CNS targeted drug delivery systems. In: Fricker G, et al, ed. The blood brain barrier. Topics in medicinal chemistry. Berlin: Springer Heidelberg; 2014. p.71-89.
  14. Mayer FQ, Adorne MD, Bender EA, de Carvalho TG, Dilda AC, Beck RC, et al. Laronidase-functionalized multiple-wall lipid-core nanocapsules: promising formulation for a more effective treatment of mucopolysaccharidosis type I. Pharm Res 2015;32:941-54. https://doi.org/10.1007/s11095-014-1508-y
  15. Muhlstein A, Gelperina S, Kreuter J. Development of nanoparticle-bound arylsulfatase B for enzyme replacement therapy of mucopolysaccharidosis VI. Pharmazie 2013;68:549-54.
  16. Salvalaio M, Rigon L, Belletti D, D'Avanzo F, Pederzoli F, Ruozi B, et al. Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders. PLoS One 2016;11:0156452.
  17. Tomanin R, Zanetti A, Zaccariotto E, D'Avanzo F, Bellettato CM, Scarpa M. Gene therapy approaches for lysosomal storage disorders, a good model for the treatment of mendelian diseases. Acta Paediatr 2012;101:692-701. https://doi.org/10.1111/j.1651-2227.2012.02674.x
  18. Wolf DA, Banerjee S, Hackett PB, Whitley CB, McIvor RS, Low WC. Gene therapy for neurologic manifestations of mucopolysaccharidoses. Exp Opin Drug Deliv 2015;12:283-96. https://doi.org/10.1517/17425247.2015.966682
  19. Kamata Y, Tanabe A, Kanaji A, Kosuga M, Fukuhara Y, Li XK, et al. Long-term normalization in the central nervous system, ocular manifestations, and skeletal deformities by a single systemic adenovirus injection into neonatal mice with mucopolysaccharidosis VII. Gene Ther 2003;10:406-14. https://doi.org/10.1038/sj.gt.3301869
  20. Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther 2016;27:478-96. https://doi.org/10.1089/hum.2016.087
  21. Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J Drug Target 1998;5:415-41. https://doi.org/10.3109/10611869808997870
  22. Belur LR, Temme A, Podetz-Pedersen KM, Riedl M, Vulchanova L, Robinson N, et al. Intranasal Adeno-Associated Virus Mediated Gene Delivery and Expression of Human Iduronidase in the Central Nervous System: A Noninvasive and Effective Approach for Prevention of Neurologic Disease in Mucopolysaccharidosis Type I. Hum Gene Ther 2017;28:576-87. https://doi.org/10.1089/hum.2017.187
  23. Wegrzyn G, Jakobkiewicz-Banecka J, Gabig-Ciminska M, Piotrowska E, Narajczyk M, Kloska A, et al. Genistein: a natural isoflavone with a potential for treatment of genetic diseases. Biochem Soc Trans 2010;38:695-701. https://doi.org/10.1042/BST0380695
  24. de Ruijter J, Valstar MJ, Narajczyk M, Wegrzyn G, Kulik W, Ijlst L, et al. Genistein in Sanfilippo disease: a randomized controlled crossover trial. Ann Neuro 2012;71:110-20. https://doi.org/10.1002/ana.22643
  25. Malinowska M, Wilkinson FL, Langford-Smith KJ, Langford-Smith A, Brown JR, Crawford BE, et al. Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS One 2010;5:14192.
  26. Piotrowska E, Jakobkiewicz-Banecka J, Maryniak A, Tylki-Szymanska A, Puk E, Liberek A, et al. Two-year follow-up of Sanfilippo Disease patients treated with a genistein-rich isoflavone extract: assessment of effects on cognitive functions and general status of patients. Med Sci Monit 2011;17:CR196-202. https://doi.org/10.12659/MSM.881715
  27. de Ruijter J, Valstar MJ, Narajczyk M, Wegrzyn G, Kulik W, Ijlst L, et al. Genistein in Sanfilippo disease: a randomized controlled crossover trial. Ann Neurol. 2012;71:110-20. https://doi.org/10.1002/ana.22643
  28. Gustavsson S, Ohlin Sjostrom E, Tjernberg A, Janson J, Westermark U, Andersson T, et al. Intravenous delivery of a chemically modified sulfamidase efficiently reduces heparan sulfate storage and brain pathology in mucopolysaccharidosis IIIA mice. Mol Genet Metab Rep 2019;21:100510. https://doi.org/10.1016/j.ymgmr.2019.100510