DOI QR코드

DOI QR Code

Extreme Points, Exposed Points and Smooth Points of the Space 𝓛s(2𝑙3)

  • Kim, Sung Guen (Department of Mathematics, Kyungpook National University)
  • Received : 2019.09.05
  • Accepted : 2020.04.21
  • Published : 2020.09.30

Abstract

We present a complete description of all the extreme points of the unit ball of 𝓛s(2𝑙3) which leads to a complete formula for ║f║ for every f ∈ 𝓛s(2𝑙3). We also show that $extB_{{\mathcal{L}}_s(^2l^3_{\infty})}{\subset}extB_{{\mathcal{L}}_s(^2l^n_{\infty})}$ for every n ≥ 4. Using the formula for ║f║ for every f ∈ 𝓛s(2𝑙3), we show that every extreme point of the unit ball of 𝓛s(2𝑙3) is exposed. We also characterize all the smooth points of the unit ball of 𝓛s(2𝑙3).

Keywords

References

  1. R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math., 45(2001), 25-39. https://doi.org/10.1215/ijm/1258138253
  2. Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on $l_1$, J. Math. Anal. Appl., 228(1998), 467-482. https://doi.org/10.1006/jmaa.1998.6161
  3. Y. S. Choi and S. G. Kim, The unit ball of $p^2(l\frac{2}{2})$, Arch. Math. (Basel), 71(1998), 472-480. https://doi.org/10.1007/s000130050292
  4. Y. S. Choi and S. G. Kim, Extreme polynomials on $c_0$, Indian J. Pure Appl. Math., 29(1998), 983-989.
  5. Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space $P(^2l_1$), Results Math., 36(1999), 26-33. https://doi.org/10.1007/BF03322099
  6. Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces $p(^2l{\frac{2}{p}})$ (p =1, 2, ${\infty}$), Indian J. Pure Appl. Math., 35(2004), 37-41.
  7. S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
  8. S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand., 92(2003), 129-140. https://doi.org/10.7146/math.scand.a-14397
  9. B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_p$ spaces, 1 < p < ${\infty}$, J. Math. Anal. Appl., 273(2002), 262-282 . https://doi.org/10.1016/S0022-247X(02)00217-2
  10. B. C. Grecu, G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory, 161(2009), 706-722. https://doi.org/10.1016/j.jat.2008.12.001
  11. S. G. Kim, Exposed 2-homogeneous polynomials on $p(^2l{\frac{2}{p}})$ ($1{\leq}p{\leq}{\infty}$), Math. Proc. R. Ir. Acad., 107A(2007), 123-129. https://doi.org/10.3318/PRIA.2007.107.2.123
  12. S. G. Kim, The unit ball of $L_s(^2l_{\infty}^2)$, Extracta Math., 24(2009), 17-29.
  13. S. G. Kim, The unit ball of $P(^2d_*(1,\,w)^2)$, Math. Proc. R. Ir. Acad., 111A(2011), 79-94.
  14. S. G. Kim, The unit ball of $L_s(^2d_*(1,\,w)^2)$, Kyungpook Math. J., 53(2013), 295-306. https://doi.org/10.5666/KMJ.2013.53.2.295
  15. S. G. Kim, Smooth polynomials of $P(^2d_*(1,\,w)^2)$, Math. Proc. R. Ir. Acad., 113A(2013), 45-58. https://doi.org/10.3318/PRIA.2013.113.05
  16. S. G. Kim, Extreme bilinear forms of $L(^2d_*(1,\,w)^2)$, Kyungpook Math. J., 53(2013), 625-638. https://doi.org/10.5666/KMJ.2013.53.4.625
  17. S. G. Kim, Exposed symmetric bilinear forms of $L_s(^2d_*(1,\,w)^2)$, Kyungpook Math. J., 54(2014), 341-347. https://doi.org/10.5666/KMJ.2014.54.3.341
  18. S. G. Kim, Exposed bilinear forms of $L(^2d_*(1,\,w)^2)$, Kyungpook Math. J., 55(2015), 119-126. https://doi.org/10.5666/KMJ.2015.55.1.119
  19. S. G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math., 13(2016), 2827-2839. https://doi.org/10.1007/s00009-015-0658-4
  20. S. G. Kim, The unit ball of $L(^2{\mathbb{R}}^2_h_{(w)})$, Bull. Korean Math. Soc., 54(2017), 417-428. https://doi.org/10.4134/BKMS.b150851
  21. S. G. Kim, Extremal problems for $L_s(^2{\mathbb{R}}^2_h_{(w)})$, Kyungpook Math. J., 57(2017), 223-232. https://doi.org/10.5666/KMJ.2017.57.2.223
  22. S. G. Kim, The unit ball of $L_s(^2l^3_{\infty})$, Comment. Math. Prace Mat., 57(2017), 1-7.
  23. S. G. Kim, The geometry of $L_s(^3l^2_{\infty})$, Commun. Korean Math. Soc., 32(2017), 991-997. https://doi.org/10.4134/ckms.c170016
  24. S. G. Kim, The geometry of $L(^3l^2_{\infty})$ and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials, Extracta Math., 33(1)(2018), 51-66. https://doi.org/10.17398/2605-5686.33.1.51
  25. S. G. Kim, Extreme bilinear form on ${\mathbb{R}}^n$ with the supremum norm, Period. Math. Hungar., 77(2018), 274-290. https://doi.org/10.1007/s10998-018-0246-z
  26. S. G. Kim, Exposed polynomials of $P(^2{\mathbb{R}}^2_{h(\frac{2}{1})})$, Extracta Math., 33(2)(2018), 127-143. https://doi.org/10.17398/2605-5686.33.2.127
  27. S. G. Kim, The unit ball of the space of bilinear forms on $\mathbb{R}^3$ with the supremum norm, Commun. Korean Math. Soc., 34(2019), 487-494. https://doi.org/10.4134/CKMS.c180111
  28. S. G. Kim, Smooth polynomials of the space $P(^2{\mathbb{R}}^2_{h(\frac{2}{1})})$, Preprint.
  29. S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2003), 449-453. https://doi.org/10.1090/S0002-9939-02-06544-9
  30. G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009), 147-160. https://doi.org/10.7146/math.scand.a-15111
  31. G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2008), 1069-1087. https://doi.org/10.1016/j.jmaa.2007.09.010
  32. R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(1998), 698-711. https://doi.org/10.1006/jmaa.1998.5942