References
- R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math., 45(2001), 25-39. https://doi.org/10.1215/ijm/1258138253
-
Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on
$l_1$ , J. Math. Anal. Appl., 228(1998), 467-482. https://doi.org/10.1006/jmaa.1998.6161 -
Y. S. Choi and S. G. Kim, The unit ball of
$p^2(l\frac{2}{2})$ , Arch. Math. (Basel), 71(1998), 472-480. https://doi.org/10.1007/s000130050292 -
Y. S. Choi and S. G. Kim, Extreme polynomials on
$c_0$ , Indian J. Pure Appl. Math., 29(1998), 983-989. -
Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space
$P(^2l_1$ ), Results Math., 36(1999), 26-33. https://doi.org/10.1007/BF03322099 -
Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces
$p(^2l{\frac{2}{p}})$ (p =1, 2,${\infty}$ ), Indian J. Pure Appl. Math., 35(2004), 37-41. - S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
- S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand., 92(2003), 129-140. https://doi.org/10.7146/math.scand.a-14397
-
B. C. Grecu, Geometry of 2-homogeneous polynomials on
$l_p$ spaces, 1 < p <${\infty}$ , J. Math. Anal. Appl., 273(2002), 262-282 . https://doi.org/10.1016/S0022-247X(02)00217-2 - B. C. Grecu, G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory, 161(2009), 706-722. https://doi.org/10.1016/j.jat.2008.12.001
-
S. G. Kim, Exposed 2-homogeneous polynomials on
$p(^2l{\frac{2}{p}})$ ($1{\leq}p{\leq}{\infty}$ ), Math. Proc. R. Ir. Acad., 107A(2007), 123-129. https://doi.org/10.3318/PRIA.2007.107.2.123 -
S. G. Kim, The unit ball of
$L_s(^2l_{\infty}^2)$ , Extracta Math., 24(2009), 17-29. -
S. G. Kim, The unit ball of
$P(^2d_*(1,\,w)^2)$ , Math. Proc. R. Ir. Acad., 111A(2011), 79-94. -
S. G. Kim, The unit ball of
$L_s(^2d_*(1,\,w)^2)$ , Kyungpook Math. J., 53(2013), 295-306. https://doi.org/10.5666/KMJ.2013.53.2.295 -
S. G. Kim, Smooth polynomials of
$P(^2d_*(1,\,w)^2)$ , Math. Proc. R. Ir. Acad., 113A(2013), 45-58. https://doi.org/10.3318/PRIA.2013.113.05 -
S. G. Kim, Extreme bilinear forms of
$L(^2d_*(1,\,w)^2)$ , Kyungpook Math. J., 53(2013), 625-638. https://doi.org/10.5666/KMJ.2013.53.4.625 -
S. G. Kim, Exposed symmetric bilinear forms of
$L_s(^2d_*(1,\,w)^2)$ , Kyungpook Math. J., 54(2014), 341-347. https://doi.org/10.5666/KMJ.2014.54.3.341 -
S. G. Kim, Exposed bilinear forms of
$L(^2d_*(1,\,w)^2)$ , Kyungpook Math. J., 55(2015), 119-126. https://doi.org/10.5666/KMJ.2015.55.1.119 - S. G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math., 13(2016), 2827-2839. https://doi.org/10.1007/s00009-015-0658-4
-
S. G. Kim, The unit ball of
$L(^2{\mathbb{R}}^2_h_{(w)})$ , Bull. Korean Math. Soc., 54(2017), 417-428. https://doi.org/10.4134/BKMS.b150851 -
S. G. Kim, Extremal problems for
$L_s(^2{\mathbb{R}}^2_h_{(w)})$ , Kyungpook Math. J., 57(2017), 223-232. https://doi.org/10.5666/KMJ.2017.57.2.223 -
S. G. Kim, The unit ball of
$L_s(^2l^3_{\infty})$ , Comment. Math. Prace Mat., 57(2017), 1-7. -
S. G. Kim, The geometry of
$L_s(^3l^2_{\infty})$ , Commun. Korean Math. Soc., 32(2017), 991-997. https://doi.org/10.4134/ckms.c170016 -
S. G. Kim, The geometry of
$L(^3l^2_{\infty})$ and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials, Extracta Math., 33(1)(2018), 51-66. https://doi.org/10.17398/2605-5686.33.1.51 -
S. G. Kim, Extreme bilinear form on
${\mathbb{R}}^n$ with the supremum norm, Period. Math. Hungar., 77(2018), 274-290. https://doi.org/10.1007/s10998-018-0246-z -
S. G. Kim, Exposed polynomials of
$P(^2{\mathbb{R}}^2_{h(\frac{2}{1})})$ , Extracta Math., 33(2)(2018), 127-143. https://doi.org/10.17398/2605-5686.33.2.127 -
S. G. Kim, The unit ball of the space of bilinear forms on
$\mathbb{R}^3$ with the supremum norm, Commun. Korean Math. Soc., 34(2019), 487-494. https://doi.org/10.4134/CKMS.c180111 -
S. G. Kim, Smooth polynomials of the space
$P(^2{\mathbb{R}}^2_{h(\frac{2}{1})})$ , Preprint. - S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2003), 449-453. https://doi.org/10.1090/S0002-9939-02-06544-9
- G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009), 147-160. https://doi.org/10.7146/math.scand.a-15111
- G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2008), 1069-1087. https://doi.org/10.1016/j.jmaa.2007.09.010
- R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(1998), 698-711. https://doi.org/10.1006/jmaa.1998.5942