Extreme Points, Exposed Points and Smooth Points of the Space $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$

Sung Guen Kim
Department of Mathematics, Kyungpook National University, Daegu 41566, Republic of Korea
e-mail: sgk317@knu.ac.kr

Abstract. We present a complete description of all the extreme points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$ which leads to a complete formula for $\|f\|$ for every $f \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. We also show that $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)} \subset \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)}$ for every $n \geq 4$. Using the formula for $\|f\|$ for every $f \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$, we show that every extreme point of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$ is exposed. We also characterize all the smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$.

1. Introduction

We denote by B_{E} the closed unit ball of a real Banach space E and by E^{*} the dual space of E. A point $x \in B_{E}$ is called an extreme point of B_{E} if the equation $x=\frac{1}{2}(y+z)$ for some $y, z \in B_{E}$ implies $x=y=z$. A point $x \in B_{E}$ is called an exposed point of B_{E} if there is $f \in E^{*}$ so that $f(x)=1=\|f\|$ and $f(y)<1$ for every $y \in B_{E} \backslash\{x\}$. A point $x \in B_{E}$ is called a smooth point of B_{E} if there is a unique $f \in E^{*}$ so that $f(x)=1=\|f\|$. It is easy to see that every exposed point of B_{E} is an extreme point. We denote by $\operatorname{ext} B_{E}, \exp B_{E}$ and $s m B_{E}$ the set of extreme points, the set of exposed points and the set of smooth points of B_{E}, respectively. A mapping $P: E \rightarrow \mathbb{R}$ is a continuous 2-homogeneous polynomial if there exists a continuous bilinear form L on the product $E \times E$ such that $P(x)=L(x, x)$ for every $x \in E$. We denote by $\mathcal{L}\left({ }^{2} E\right)$ the Banach space of all continuous bilinear forms on E endowed with the norm $\|L\|=\sup _{\|x\|=\|y\|=1}|L(x, y)|$. The subspace of all continuous symmetric bilinear forms on E is denoted by $\mathcal{L}_{s}\left({ }^{2} E\right)$. We denote by $\mathcal{P}\left({ }^{2} E\right)$ the Banach space of all continuous 2-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$. For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [7].

In 1998, Choi et al. [2, 3] initiated the classification of the extreme points

Received September 5, 2019; revised March 10, 2020; accepted April 21, 2020.
2010 Mathematics Subject Classification: 46A22.
Key words and phrases: symmetric bilinear forms on \mathbb{R}^{3} with the supremum norm, extreme points, exposed points, smooth points.
of the unit ball of $\mathcal{P}\left({ }^{2} l_{1}^{2}\right)$ and $\mathcal{P}\left({ }^{2} l_{2}^{2}\right)$. Kim classified the exposed 2-homogeneous polynomials in $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$ [11] and the extreme points, exposed points, and smooth points of the unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)[13,15,19]$, where $d_{*}(1, w)^{2}=\mathbb{R}^{2}$ with the octagonal norm of weight w. Recently, Kim [25, 26, 28] classified all the extreme points, exposed points, and smooth points of the unit ball of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$, where $\mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}$ is the plane \mathbb{R}^{2} with the hexagonal norm of weight $\frac{1}{2}$.

In 2009, Kim [12] initiated the classification of the extreme points, exposed points, and smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$. Kim [14, 16, 17, 18, 20, 21, $22,23,24]$ classified the extreme points, exposed points, and smooth points of the unit balls of the spaces

$$
\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right), \mathcal{L}\left({ }^{3} l_{\infty}^{2}\right), \mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right), \mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right), \mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right) \text { and } \mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right),
$$

where $\mathbb{R}_{h(w)}^{2}$ is the plane \mathbb{R}^{2} with the hexagonal norm of weight $w,\|(x, y)\|_{h(w)}=$ $\max \{|y|,|x|+(1-w)|y|\}$. Recently, Kim [25] characterized the extreme points of the spaces $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)$ and $\mathcal{L}\left({ }^{2} l_{\infty}^{n}\right)$ for $n \geq 2$.

Let $n \geq 2$ and $l_{\infty}^{n}:=\mathbb{R}^{n}$ with the supremum norm. Given $\left\{a_{i j}\right\}_{i, j=1}^{n} \subset \mathbb{R}$, let $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{n}\right)$ be defined by the rule

$$
T\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)=\sum_{1 \leq i, j \leq n} a_{i j} x_{i} y_{j} .
$$

If $n=2$, for simplicity, we will write

$$
T=\left(a_{11}, a_{22}, a_{12}, a_{21}\right)^{t}
$$

as a 4×1 column vector. If $T \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, we will write

$$
T=\left(a_{11}, a_{22}, 2 a_{12}\right)^{t}
$$

as a 3×1 column vector. If $n=3$, for simplicity, we will write

$$
T=\left(a_{11}, a_{22}, a_{33}, a_{12}, a_{21}, a_{13}, a_{31}, a_{23}, a_{32}\right)^{t}
$$

as a 9×1 column vector. If $T \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$, we will write

$$
T=\left(a_{11}, a_{22}, a_{33}, 2 a_{12}, 2 a_{13}, 2 a_{23}\right)^{t}
$$

as a 6×1 column vector.
In [12] it was shown:
(a) $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)}=\left\{ \pm(1,0,0)^{t}, \pm(0,1,0)^{t}, \pm\left(\frac{1}{2},-\frac{1}{2}, 1\right)^{t}, \pm\left(\frac{1}{2},-\frac{1}{2},-1\right)^{t}\right\} ;$
(b) $\exp B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left(2 l_{\infty}^{2}\right)}$.

We refer to $([1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20$, $21,22,23,24,25,26,27,28,29,30,31,32]$ for some recent works about extremal properties of multilinear mappings and homogeneous polynomials on some classical Banach spaces.

In this paper we present a complete description of the 42 extreme points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$ which leads to a complete formula of $\|f\|$ for every $f \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. We also show that $\operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)} \subset \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{n}\right)}$ for every $n \geq 4$. Using the formula of $\|f\|$ for every $f \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$, we show that every extreme point of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$ is exposed. The main result about smooth points is known to "the Mazur density theorem." Recall that the Mazur density theorem says that the set of all the smooth points of a solid closed convex subset of a separable Banach space is a residual subset of its boundary. Motivated by the Mazur density theorem we characterize all the smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$.

2. The Extreme Points of the Unit Ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$

Recently, Kim [22] showed the following: Let

$$
\begin{aligned}
\Omega=\{ & (1,1,1,1,1,1),(1,-1,1,0,1,0),(1,1,-1,1,0,0),(-1,1,1,0,0,1) \\
& (1,1,1,-1,1,-1),(1,-1,-1,0,0,1),(-1,-1,1,1,0,0),(1,1,1,1,-1,-1) \\
& (-1,1,-1,0,1,0),(1,1,1,-1,-1,1)\}
\end{aligned}
$$

and

$$
\begin{aligned}
\Gamma=\{ & {[(1,1,1),(1,1,1)],[(1,1,1),(1,-1,1)],[(1,1,1),(1,1,-1)],[(1,1,1),(-1,1,1)], } \\
& {[(1,-1,1),(1,-1,1)],[(1,-1,1),(1,1,-1)],[(1,-1,1),(-1,1,1)], } \\
& {[(1,1,-1),(1,1,-1)],[(1,1,-1),(-1,1,1)],[(-1,1,1),(-1,1,1)]\} . }
\end{aligned}
$$

The following statements hold true.
(a) Let $T=\left(a_{11}, a_{22}, a_{33}, 2 a_{12}, 2 a_{13} 2 a_{23}\right)^{t} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$ with $\|T\|=1$. Then, $T \in$ $\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$ if and only if there exist at least 6 linearly independent vectors $W_{1}, \ldots, W_{6} \in \Omega$ and $Z_{1}, \ldots, Z_{6} \in \Gamma$ such that

$$
W_{j} \cdot S=S\left(Z_{j}\right) \text { for all } S \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right) \text { and }\left|T\left(Z_{j}\right)\right|=1 \text { for } j=1, \ldots, 6
$$

Let A be the invertible 6×6 matrix such that the j-row vector of A as $[\operatorname{Row}(A)]_{j}=W_{j}$ for $j=1, \ldots, 6$. Then, $A S=\left(S\left(Z_{1}\right), \cdots, S\left(Z_{6}\right)\right)^{t}$ for all $S \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$.
(b) $\exp B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$.

Theorem 2.1.([22]) Let $T=\left(a_{11}, a_{22}, a_{33}, 2 a_{12}, 2 a_{13}, 2 a_{23}\right)^{t} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$. Then,

$$
\begin{aligned}
& \|T\|=\max \left\{2\left|a_{12}\right|+\left|a_{11}+a_{22}-a_{33}\right|, 2\left|a_{13}\right|+\left|a_{11}-a_{22}+a_{33}\right|,\right. \\
& \quad 2\left|a_{23}\right|+\left|-a_{11}+a_{22}+a_{33}\right|, 2\left|a_{12}+a_{13}\right|+\left|a_{11}+a_{22}+a_{33}+2 a_{23}\right|, \\
& \left.2\left|a_{12}-a_{13}\right|+\left|a_{11}+a_{22}+a_{33}-2 a_{23}\right|\right\}
\end{aligned}
$$

Note that if $\|T\|=1$, then $\left|a_{i i}\right| \leq 1$ for $i=1,2,3$ and $\left|a_{i j}\right| \leq \frac{1}{2}$ for $1 \leq i \neq j \leq 3$. With the aid of Wolfram Mathematica 8, we present a complete description of the 42 extreme points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$.

Theorem 2.2.

$$
\begin{aligned}
\operatorname{ext}_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}=\{ & \pm(1,0,0,0,0,0)^{t}, \pm(0,1,0,0,0,0)^{t}, \pm(0,0,1,0,0,0)^{t} \\
& \pm\left(\frac{1}{2},-\frac{1}{2}, 0,1,0,0\right)^{t}, \pm\left(\frac{1}{2},-\frac{1}{2}, 0,-1,0,0\right)^{t}, \pm\left(\frac{1}{2}, 0,-\frac{1}{2}, 0,1,0\right)^{t} \\
& \pm\left(\frac{1}{2}, 0,-\frac{1}{2}, 0,-1,0\right)^{t}, \pm\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,1\right)^{t}, \pm\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,-1\right)^{t} \\
& \pm\left(\frac{1}{2}, 0,0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(\frac{1}{2}, 0,0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(\frac{1}{2}, 0,0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{t} \\
& \pm\left(0, \frac{1}{2}, 0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0, \frac{1}{2}, 0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{t} \\
& \pm\left(0,0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0,0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{t} \\
& \left. \pm\left(-\frac{1}{2}, 0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0,-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0,0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}\right\}
\end{aligned}
$$

Proof. Claim: $T=\left(\frac{1}{2},-\frac{1}{2}, 0,1,0,0\right)^{t} \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$. Let

$$
T_{1}=\left(\frac{1}{2}+\epsilon_{11},-\frac{1}{2}+\epsilon_{22}, \epsilon_{33}, 1+\epsilon_{12}, \epsilon_{13}, \epsilon_{23}\right)^{t}
$$

and

$$
T_{2}=\left(\frac{1}{2}-\epsilon_{11},-\frac{1}{2}-\epsilon_{22},-\epsilon_{33}, 1-\epsilon_{12},-\epsilon_{13},-\epsilon_{23}\right)^{t}
$$

with $\left\|T_{1}\right\|=\left\|T_{2}\right\|=1$ for some $\epsilon_{i j} \in \mathbb{R}$ for $i, j=1,2,3$. By Theorem 2.1, it follows that

$$
\begin{aligned}
& 0=\epsilon_{12}=\epsilon_{13}=\epsilon_{23} \\
& 0=\epsilon_{11}+\epsilon_{22}+\epsilon_{33}, \\
& 0=-\epsilon_{11}+\epsilon_{22}+\epsilon_{33}, \\
& 0=\epsilon_{11}-\epsilon_{22}+\epsilon_{33},
\end{aligned}
$$

which show that $\epsilon_{i j}=0$ for $i, j=1,2,3$. Hence, $T \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} l_{\infty}^{3}\right)}$.
Claim: $T=\left(\frac{1}{2}, 0,0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t} \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$. Let

$$
T_{1}=\left(\frac{1}{2}+\epsilon_{11}, \epsilon_{22}, \epsilon_{33},-\frac{1}{2}+\epsilon_{12}, \frac{1}{2}+\epsilon_{13}, \frac{1}{2}+\epsilon_{23}\right)^{t}
$$

and

$$
T_{2}=\left(\frac{1}{2}=\epsilon_{11},-\epsilon_{22},-\epsilon_{33},-\frac{1}{2}-\epsilon_{12}, \frac{1}{2}-\epsilon_{13}, \frac{1}{2}-\epsilon_{23}\right)^{t}
$$

with $\left\|T_{1}\right\|=\left\|T_{2}\right\|=1$ for some $\epsilon_{i j} \in \mathbb{R}$ for $i, j=1,2,3$. By Theorem 2.1, it follows that

$$
\begin{aligned}
& 0=\epsilon_{12}-\epsilon_{13}=\epsilon_{12}+\epsilon_{13} \\
& 0=\epsilon_{11}+\epsilon_{22}+\epsilon_{33}-\epsilon_{23}, \\
& 0=\epsilon_{11}+\epsilon_{22}+\epsilon_{33}+\epsilon_{23}, \\
& 0=-\epsilon_{11}+\epsilon_{22}+\epsilon_{33}, \\
& 0=\epsilon_{11}-\epsilon_{22}+\epsilon_{33},
\end{aligned}
$$

which show that $\epsilon_{i j}=0$ for $i, j=1,2,3$. Hence, $T \in \operatorname{ext} B_{\mathcal{L}\left({ }^{2} l_{\infty}^{3}\right)}$.
The other 40 bilinear forms in the list of Theorem 2.2 can be proved to be extreme in a similar way. We leave this to the reader.

Let $T=\left(a_{11}, a_{22}, a_{33}, 2 a_{12}, 2 a_{13}, 2 a_{23}\right)^{t} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$ with $\|T\|=1$. By the comments made right before Theorem 2.1, $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$ if and only if $T=$ $A^{-1}\left(T\left(Z_{1}\right), \cdots, T\left(Z_{6}\right)\right)^{t}$ for some $Z_{1}, \ldots, Z_{6} \in \Gamma$ with $\left|T\left(Z_{j}\right)\right|=1(j=1, \ldots, 6)$. Therefore, we may classify all the extreme points of $B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}\right)}$ by the following steps: There are 210 choices of 6 vectors among the 10 elements of Ω, that is ${ }_{10} C_{6}=210$. First, among 210 cases, find $W_{1}, \ldots, W_{6} \in \Omega$ such that the corresponding matrix A with rows W_{1}, \ldots, W_{6} is invertible, and next solve A^{-1} and using Theorem 2.1, obtain $T=A^{-1}\left(b_{1}, \cdots, b_{6}\right)^{t}$ satisfying

$$
\left\|A^{-1}\left(b_{1}, \cdots, b_{6}\right)^{t}\right\|=1
$$

for some $b_{1}, \ldots, b_{6}= \pm 1$.
Those $T=A^{-1}\left(b_{1}, \cdots, b_{6}\right)^{t}$ are all the extreme points of $B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$. With the aid of Wolfram Mathematica 8, we may check the 42 bilinear forms in the list of Theorem 2.2 are all the extreme points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$.

Theorem 2.3. We have $\operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)} \subset \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{n}\right)}$ for every $n \geq 4$.
Proof. Let

$$
\begin{aligned}
T\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)= & \frac{1}{2} x_{3} y_{3}-\frac{1}{4}\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
& +\frac{1}{4}\left(x_{1} y_{3}+x_{3} y_{1}\right)+\frac{1}{4}\left(x_{2} y_{3}+x_{3} y_{2}\right) \\
:= & \left(0,0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}
\end{aligned}
$$

Claim 1: for $n \geq 4, T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l_{l}^{n}\right)}$. Use induction on n.
Case 1: $n=4$.
Suppose that $T=\frac{1}{2}\left(S_{1}+S_{2}\right)$ for some $S_{1}, S_{2} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{4}\right)$ with $\left\|S_{1}\right\|=1=\left\|S_{2}\right\|$.

Write

$$
\begin{aligned}
& S_{1}\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right) \\
& =\epsilon_{1} x_{1} y_{1}+\epsilon_{2} x_{2} y_{2}+\left(\frac{1}{2}+a_{1}\right) x_{3} y_{3}+\left(-\frac{1}{4}+a_{2}\right)\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
& \quad+\left(\frac{1}{4}+a_{3}\right)\left(x_{1} y_{3}+x_{3} y_{1}\right)+\left(\frac{1}{4}+a_{4}\right)\left(x_{2} y_{3}+x_{3} y_{2}\right) \\
& \quad+b_{1}\left(x_{4} y_{1}+x_{1} y_{4}\right)+b_{2}\left(x_{2} y_{4}+x_{4} y_{2}\right)+b_{3}\left(x_{3} y_{4}+x_{4} y_{3}\right)+b_{4} x_{4} y_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& S_{2}\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right) \\
& =\epsilon_{1} x_{1} y_{1}-\epsilon_{2} x_{2} y_{2}+\left(\frac{1}{2}-a_{1}\right) x_{3} y_{3}+\left(-\frac{1}{4}-a_{2}\right)\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
& \quad+\left(\frac{1}{4}-a_{3}\right)\left(x_{1} y_{3}+x_{3} y_{1}\right)+\left(\frac{1}{4}-a_{4}\right)\left(x_{2} y_{3}+x_{3} y_{2}\right) \\
& \quad-b_{1}\left(x_{4} y_{1}+x_{1} y_{4}\right)-b_{2}\left(x_{2} y_{4}+x_{4} y_{2}\right)-b_{3}\left(x_{3} y_{4}+x_{4} y_{3}\right)-b_{4} x_{4} y_{4}
\end{aligned}
$$

for some $\epsilon_{1}, \epsilon_{2}, a_{j}, b_{j} \in \mathbb{R}$ for $j=1, \ldots, 4$.
Note that, for $i=1,2$,

$$
S_{i}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right),\left\|S_{i}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right)\right\| \leq 1
$$

and

$$
T=\frac{1}{2}\left(S_{1}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right)+S_{2}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right) .\right.
$$

Since $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\mathrm{l}}^{3}\right)}, T\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)=S_{1}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right)$, which shows that $\epsilon_{1}=\epsilon_{2}=a_{j}=0$ for $j=1, \ldots, 4$. Hence,

$$
\begin{aligned}
S_{1}\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right)= & T\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)+b_{1}\left(x_{4} y_{1}+x_{1} y_{4}\right) \\
& +b_{2}\left(x_{2} y_{4}+x_{4} y_{2}\right)+b_{3}\left(x_{3} y_{4}+x_{4} y_{3}\right)+b_{4} x_{4} y_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{2}\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right)= & T\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)-\left(b_{1}\left(x_{4} y_{1}+x_{1} y_{4}\right)\right. \\
& \left.+b_{2}\left(x_{2} y_{4}+x_{4} y_{2}\right)+b_{3}\left(x_{3} y_{4}+x_{4} y_{3}\right)+b_{4} x_{4} y_{4}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& 1 \geq \max \left\{\left|S_{i}\left(\left(1,1,1, x_{4}\right),\left(1,-1,1, y_{4}\right)\right)\right|,\left|S_{i}\left(\left(1,1,1, x_{4}\right),\left(1,1,-1, y_{4}\right)\right)\right|:\right. \\
&\left.\left|x_{4}\right| \leq 1,\left|y_{4}\right| \leq 1, i=1,2\right\} \\
&=\max \left\{1+\left|b_{1}\left(y_{4}+x_{4}\right)+b_{2}\left(y_{4}-x_{4}\right)+b_{3}\left(y_{4}+x_{4}\right)+b_{4} x_{4} y_{4}\right|\right. \\
&\left.1+\left|b_{1}\left(y_{4}+x_{4}\right)+b_{2}\left(y_{4}+x_{4}\right)+b_{3}\left(y_{4}-x_{4}\right)+b_{4} x_{4} y_{4}\right|:\left|x_{4}\right| \leq 1,\left|y_{4}\right| \leq 1\right\},
\end{aligned}
$$

which imply that, for all $\left|x_{4}\right| \leq 1,\left|y_{4}\right| \leq 1$,

$$
\begin{aligned}
& 0=b_{1}\left(y_{4}+x_{4}\right)+b_{2}\left(y_{4}-x_{4}\right)+b_{3}\left(y_{4}+x_{4}\right)+b_{4} x_{4} y_{4} \\
& 0=b_{1}\left(y_{4}+x_{4}\right)+b_{2}\left(y_{4}+x_{4}\right)+b_{3}\left(y_{4}-x_{4}\right)+b_{4} x_{4} y_{4}
\end{aligned}
$$

which shows that $b_{j}=0$ for $j=1, \ldots, 4$. Therefore, $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{4}\right)}$.
Suppose that for $n=k, T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 l_{\infty}^{k}\right)}$. We will show that $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 l_{\infty}^{k+1}\right)}$. Suppose that $T=\frac{1}{2}\left(W_{1}+W_{2}\right)$ for some $W_{1}, W_{2} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{k+1}\right)$ with $\left\|W_{1}\right\|=1=$ $\left\|W_{2}\right\|$. By the above argument, we may assume that

$$
\begin{aligned}
W_{1}\left(\left(x_{1}, \ldots, x_{k+1}\right),\left(y_{1}, \ldots, y_{k+1}\right)\right)= & T\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right) \\
& +\sum_{1 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1}
\end{aligned}
$$

and

$$
\begin{aligned}
W_{2}\left(\left(x_{1}, \ldots, x_{k+1}\right),\left(y_{1}, \ldots, y_{k+1}\right)\right)= & T\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right) \\
& -\sum_{1 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)-d x_{k+1} y_{k+1}
\end{aligned}
$$

for some $c_{j}, d \in \mathbb{R}(j=1, \ldots, k)$. It follows that

$$
\begin{aligned}
1 \geq \max \{ & \left|W_{i}\left(\left(1,1,1, x_{4}, \ldots, x_{k+1}\right),\left(1,-1,1, y_{4}, \ldots, y_{k+1}\right)\right)\right|, \\
& \left|W_{i}\left(\left(1,1,1, x_{4}, \ldots, x_{k+1}\right),\left(1,1,-1, y_{4}, \ldots, y_{k+1}\right)\right)\right|, \\
& \left|W_{i}\left(\left(1,1,1, x_{4}, \ldots, x_{k+1}\right),\left(1,-1,-1, y_{4}, \ldots, y_{k+1}\right)\right)\right|:\left|x_{j}\right| \leq 1,\left|y_{j}\right| \leq 1, \\
& j=4, \ldots, k+1, i=1,2\} \\
=\max \{1 & +\mid c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}+x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1} \mid \\
& 1+\mid c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}+x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1} \mid \\
& 1+\mid c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1} \mid \\
& \left.:\left|x_{j}\right| \leq 1,\left|y_{j}\right| \leq 1, j=4, \ldots, k+1\right\},
\end{aligned}
$$

which shows that, for $\left|x_{j}\right| \leq 1,\left|y_{j}\right| \leq 1, j=4, \ldots, k+1$,

$$
\begin{aligned}
0= & c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}+x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1}
\end{aligned}
$$

$$
\begin{aligned}
0= & c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}+x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1}, \\
0= & c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1} .
\end{aligned}
$$

If $x_{j}=y_{j}=0$ for $j=4, \ldots, k$, then, for $\left|x_{k+1}\right| \leq 1,\left|y_{k+1}\right| \leq 1$,

$$
\begin{aligned}
& 0=c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}+x_{k+1}\right)+d x_{k+1} y_{k+1}, \\
& 0=c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}+x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right)+d x_{k+1} y_{k+1}, \\
& 0=c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right)+d x_{k+1} y_{k+1}
\end{aligned}
$$

which shows that $c_{j}=0=d$ for $j=1,2,3$. Hence,
$(*) \quad 0=\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)$ for $\left|x_{j}\right| \leq 1,\left|y_{j}\right| \leq 1, j=4, \ldots, k+1$.
We claim that $c_{j}=0$ for all $j=4, \ldots, k$. Let $4 \leq j_{0} \leq k$ be fixed. Let $x_{j}=y_{j}=1$ for $4 \leq j \neq j_{0} \leq k$ and $y_{k+1}=-y_{j_{0}}=1=-x_{k+1}=x_{j_{0}}$. By $(*)$, we have $c_{j_{0}}=0$. Hence, $W_{1}=T=W_{2}$, so $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l_{\infty}^{k+1}\right)}$. Therefore, we have shown that $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{n}\right)}$ for $n \geq 4$.

Let

$$
\begin{aligned}
S\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right) & =\frac{1}{2} x_{1} y_{1}-\frac{1}{2} x_{2} y_{2}+\frac{1}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right) \\
& :=\left(\frac{1}{2},-\frac{1}{2}, 0,1,0,0\right)^{t}
\end{aligned}
$$

Claim 2: for $n \geq 4, S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)}$. Use induction on n.
Case 1: $n=4$
Suppose that $S=\frac{1}{2}\left(T_{1}+T_{2}\right)$ for some $T_{1}, T_{2} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{4}\right)$ with $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$. Write

$$
\begin{aligned}
T_{1}\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right)= & \left(\frac{1}{2}+a_{1}\right) x_{1} y_{1}+\left(-\frac{1}{2}+a_{2}\right) x_{2} y_{2}+a_{3} x_{3} y_{3} \\
& +\left(\frac{1}{2}+b_{1}\right)\left(x_{1} y_{2}+x_{2} y_{1}\right)+b_{2}\left(x_{2} y_{3}+x_{3} y_{2}\right) \\
& +b_{3}\left(x_{3} y_{1}+x_{1} y_{3}\right)+c_{1}\left(x_{1} y_{4}+x_{4} y_{1}\right) \\
& +c_{2}\left(x_{2} y_{4}+x_{4} y_{2}\right)+c_{3}\left(x_{3} y_{4}+x_{4} y_{3}\right)+c_{4} x_{4} y_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
T_{2}\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right)= & \left(\frac{1}{2}-a_{1}\right) x_{1} y_{1}+\left(-\frac{1}{2}-a_{2}\right) x_{2} y_{2}-a_{3} x_{3} y_{3} \\
& +\left(\frac{1}{2}-b_{1}\right)\left(x_{1} y_{2}+x_{2} y_{1}\right)-b_{2}\left(x_{2} y_{3}+x_{3} y_{2}\right) \\
& -b_{3}\left(x_{3} y_{1}+x_{1} y_{3}\right)-c_{1}\left(x_{1} y_{4}+x_{4} y_{1}\right) \\
& -c_{2}\left(x_{2} y_{4}+x_{4} y_{2}\right)-c_{3}\left(x_{3} y_{4}+x_{4} y_{3}\right)-c_{4} x_{4} y_{4}
\end{aligned}
$$

for some $a_{i}, b_{i}, c_{j} \in \mathbb{R}$ for $i=1,2,3, j=1, \ldots, 4$. Note that, for $i=1,2$,

$$
T_{i}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right) \in \mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right),\left\|T_{i}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right)\right\| \leq 1
$$

and

$$
S=\frac{1}{2}\left(T_{1}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right)+T_{2}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right)\right.
$$

Since $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)}, S\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)=T_{1}\left(\left(x_{1}, x_{2}, x_{3}, 0\right),\left(y_{1}, y_{2}, y_{3}, 0\right)\right)$, which shows that $a_{i}=b_{i}=0$ for $i=1,2,3$. Hence,

$$
\begin{aligned}
T_{1}\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right)= & S\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)+c_{1}\left(x_{1} y_{4}+x_{4} y_{1}\right) \\
& +c_{2}\left(x_{2} y_{4}+x_{4} y_{2}\right)+c_{3}\left(x_{3} y_{4}+x_{4} y_{3}\right)+c_{4} x_{4} y_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
S_{2}\left(\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}, y_{4}\right)\right)= & T\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)-\left(c_{1}\left(x_{1} y_{4}+x_{4} y_{1}\right)\right. \\
& \left.+c_{2}\left(x_{2} y_{4}+x_{4} y_{2}\right)+c_{3}\left(x_{3} y_{4}+x_{4} y_{3}\right)+c_{4} x_{4} y_{4}\right)
\end{aligned}
$$

It follows that

$$
\begin{gathered}
1 \geq \max \left\{\left|T_{i}\left(\left(1,1,1, x_{4}\right),\left(1,-1,1, y_{4}\right)\right)\right|,\left|T_{i}\left(\left(1,1,1, x_{4}\right),\left(1,1,-1, y_{4}\right)\right)\right|:\right. \\
\left.\left|x_{4}\right| \leq 1,\left|y_{4}\right| \leq 1, i=1,2\right\} \\
=\max \left\{1+\left|c_{1}\left(y_{4}+x_{4}\right)+c_{2}\left(y_{4}-x_{4}\right)+c_{3}\left(y_{4}+x_{4}\right)+c_{4} x_{4} y_{4}\right|\right. \\
1+\left|c_{1}\left(y_{4}+x_{4}\right)+c_{2}\left(y_{4}+x_{4}\right)+c_{3}\left(y_{4}-x_{4}\right)+c_{4} x_{4} y_{4}\right|: \\
\left.\left|x_{4}\right| \leq 1,\left|y_{4}\right| \leq 1\right\}
\end{gathered}
$$

which imply that, for all $\left|x_{4}\right| \leq 1,\left|y_{4}\right| \leq 1$,

$$
\begin{aligned}
& 0=c_{1}\left(y_{4}+x_{4}\right)+c_{2}\left(y_{4}-x_{4}\right)+c_{3}\left(y_{4}+x_{4}\right)+c_{4} x_{4} y_{4} \\
& 0=c_{1}\left(y_{4}+x_{4}\right)+c_{2}\left(y_{4}+x_{4}\right)+c_{3}\left(y_{4}-x_{4}\right)+c_{4} x_{4} y_{4}
\end{aligned}
$$

which shows that $c_{j}=0$ for $j=1, \ldots, 4$. Therefore, $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{4}\right)}$.
Suppose that for $n=k, S \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 l_{\infty}^{k}\right)}$. We will show that $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left(2 l_{\infty}^{k+1}\right)}$. Suppose that $S=\frac{1}{2}\left(W_{1}+W_{2}\right)$ for some $W_{1}, W_{2} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{k+1}\right)$ with $\left\|W_{1}\right\|=1=$
$\left\|W_{2}\right\|$. By the above argument, we may assume that

$$
\begin{aligned}
W_{1}\left(\left(x_{1}, \ldots, x_{k+1}\right),\left(y_{1}, \ldots, y_{k+1}\right)\right)= & S\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right) \\
& +\sum_{1 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1}
\end{aligned}
$$

and

$$
\begin{aligned}
W_{2}\left(\left(x_{1}, \ldots, x_{k+1}\right),\left(y_{1}, \ldots, y_{k+1}\right)\right)= & S\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right) \\
& -\sum_{1 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)-d x_{k+1} y_{k+1}
\end{aligned}
$$

for some $c_{j}, d \in \mathbb{R}(j=1, \ldots, k)$. It follows that

$$
\begin{aligned}
1 \geq \max \{ & \left|W_{i}\left(\left(1,1,1, x_{4}, \ldots, x_{k+1}\right),\left(1,-1,1, y_{4}, \ldots, y_{k+1}\right)\right)\right| \\
& \left|W_{i}\left(\left(1,1,1, x_{4}, \ldots, x_{k+1}\right),\left(1,1,-1, y_{4}, \ldots, y_{k+1}\right)\right)\right| \\
& \left|W_{i}\left(\left(1,1,1, x_{4}, \ldots, x_{k+1}\right),\left(1,-1,-1, y_{4}, \ldots, y_{k+1}\right)\right)\right|: \\
& \left.\left|x_{j}\right| \leq 1,\left|y_{j}\right| \leq 1, j=4, \ldots, k+1, i=1,2\right\} \\
=\max \{1 & +\mid c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}+x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1} \mid, \\
& 1+\mid c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}+x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1} \mid \\
& 1+\mid c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1} \mid: \\
& \left.\left|x_{j}\right| \leq 1,\left|y_{j}\right| \leq 1, j=4, \ldots, k+1\right\}
\end{aligned}
$$

which shows that, for $\left|x_{j}\right| \leq 1,\left|y_{j}\right| \leq 1, j=4, \ldots, k+1$,

$$
\begin{aligned}
0= & c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}+x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1}, \\
0= & c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}+x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1}, \\
0= & c_{1}\left(y_{k+1}+x_{k+1}\right)+c_{2}\left(y_{k+1}-x_{k+1}\right)+c_{3}\left(y_{k+1}-x_{k+1}\right) \\
& +\sum_{4 \leq j \leq k} c_{j}\left(x_{j} y_{k+1}+x_{k+1} y_{j}\right)+d x_{k+1} y_{k+1} .
\end{aligned}
$$

By Claim 1, we conclude that $c_{j}=0=d$ for $j=1, \ldots, k$. Hence, $W_{1}=S=W_{2}$, so $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{k+1}\right)}$. Therefore, we have shown that $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)}$ for $n \geq 4$.

Let

$$
S\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)=x_{1} y_{1}:=(1,0,0,0,0,0)^{t}
$$

Claim 3: for $n \geq 4, S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)}$.
Suppose that $S=\frac{1}{2}\left(T_{1}+T_{2}\right)$ for some $T_{1}, T_{2} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)$ with $\left\|T_{1}\right\|=1=\left\|T_{2}\right\|$. Write

$$
\begin{aligned}
T_{1}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)= & \left(1+a_{1}\right) x_{1} y_{1} \\
& +\sum_{2 \leq j \leq n} a_{j} x_{j} y_{j}+\sum_{1 \leq i<j \leq n} b_{i j}\left(x_{i} y_{j}+x_{j} y_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
T_{2}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)= & \left(1-a_{1}\right) x_{1} y_{1} \\
& -\sum_{2 \leq j \leq n} a_{j} x_{j} y_{j}-\sum_{1 \leq i<j \leq n} b_{i j}\left(x_{i} y_{j}+x_{j} y_{i}\right)
\end{aligned}
$$

for some $a_{i}, b_{i j} \in \mathbb{R}$ for $i, j=1, \ldots, n$. It follows that

$$
1 \geq \max \left\{\left|T_{l}\left(e_{1}, e_{1}\right)\right|: l=1,2\right\}=1+\left|a_{1}\right|
$$

which imply that $a_{1}=0$. Let $2 \leq j \leq n$ be fixed. Since

$$
1 \geq \max \left\{\left|T_{l}\left(e_{1}+t e_{j}, e_{1}+t e_{j}\right)\right|: l=1,2,|t| \leq 1\right\}=1+\left|a_{j} t^{2}+2 b_{i j} t\right|
$$

and

$$
0=a_{j} t^{2}+2 b_{1 j} t
$$

for every $|t| \leq 1$. Hence, $0=a_{j}=b_{1 j}$ for every $2 \leq j \leq n$. Let $2 \leq i<j \leq n$ be fixed. Since

$$
1 \geq \max \left\{\left|T_{l}\left(e_{1}+e_{i}+e_{j}, e_{1}+e_{i}+e_{j}\right)\right|: l=1,2\right\}=1+2\left|b_{i j}\right|
$$

$b_{i j}=0$. Hence, $S=T_{1}$, so $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{n}\right)}$ for $n \geq 4$.
Notice that the other 39 cases are similar since, essentially there are three groups of extreme points, those having an 1 , those having two $\frac{1}{2}$'s and those having four $\frac{1}{2}$'s. Therefore, the other 39 extreme points in the list of Theorem 2.2 are extreme in the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{n}\right)$. We complete the proof.

3. The Exposed Points of the Unit Ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$

Theorem 2.2 leads to a complete formula of $\|f\|$ for every $f \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$.
Theorem 3.1. Let $f \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$ with $\alpha_{11}:=f\left(x_{1} x_{2}\right), \alpha_{22}:=f\left(y_{1} y_{2}\right), \alpha_{33}:=$ $f\left(z_{1} z_{2}\right), \beta_{12}:=f\left(x_{1} y_{2}+x_{2} y_{1}\right), \beta_{13}:=f\left(x_{1} z_{2}+x_{2} z_{1}\right), \beta_{23}:=f\left(y_{1} z_{2}+y_{2} z_{1}\right)$. Then,

$$
\begin{aligned}
&\|f\|=\max _{j=1,2,3}\left\{\left|\alpha_{j j}\right|, \frac{1}{2}\left|\alpha_{11}-\alpha_{22}\right|+\frac{1}{2}\left|\beta_{12}\right|, \frac{1}{2}\left|\alpha_{22}-\alpha_{33}\right|+\frac{1}{2}\left|\beta_{23}\right|\right. \\
& \frac{1}{2}\left|\alpha_{11}-\alpha_{33}\right|+\frac{1}{2}\left|\beta_{13}\right|, \frac{1}{4}\left(\left|2 \alpha_{j j}+\beta_{12}\right|+\left|\beta_{13}-\beta_{23}\right|\right), \\
&\left.\frac{1}{4}\left(\left|2 \alpha_{j j}-\beta_{12}\right|+\left|\beta_{13}+\beta_{23}\right|\right)\right\}
\end{aligned}
$$

Proof. By the Krein-Milman Theorem, $\|f\|=\sup _{T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)}}|f(T)|$. By Theorem 2.2, it follows that

$$
\begin{aligned}
&\|f\|=\max \left\{\left|f\left((1,0,0,0,0,0)^{t}\right)\right|,\left|f\left((0,1,0,0,0,0)^{t}\right)\right|,\left|f\left((0,0,1,0,0,0)^{t}\right)\right|,\right. \\
&\left|f\left(\left(\frac{1}{2},-\frac{1}{2}, 0,1,0,0\right)^{t}\right)\right|,\left|f\left(\left(\frac{1}{2},-\frac{1}{2}, 0,-1,0,0\right)^{t}\right)\right|,\left|f\left(\left(\frac{1}{2}, 0,-\frac{1}{2}, 0,1,0\right)^{t}\right)\right|, \\
&\left|f\left(\left(\frac{1}{2}, 0,-\frac{1}{2}, 0,-1,0\right)^{t}\right)\right|,\left|f\left(\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,1\right)^{t}\right)\right|,\left|f\left(\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,-1\right)^{t}\right)\right|, \\
&\left|f\left(\left(\frac{1}{2}, 0,0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right|,\left|f\left(\left(\frac{1}{2}, 0,0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right|,\left|f\left(\left(\frac{1}{2}, 0,0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{t}\right)\right|, \\
&\left|f\left(\left(0, \frac{1}{2}, 0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right|,\left|f\left(\left(0, \frac{1}{2}, 0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right|,\left|f\left(\left(0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{t}\right)\right|, \\
& \mid\left|f\left(\left(0,0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right|,\left|f\left(\left(0,0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right|,\left|f\left(\left(0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{t}\right)\right|, \\
&\left.\left|f\left(\left(-\frac{1}{2}, 0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right|,\left|f\left(\left(0,-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right|,\left|f\left(\left(0,0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}\right)\right|\right\} \\
&=\max _{j=1,2,3}\left\{\left|\alpha_{j j}\right|, \frac{1}{2}\left|\alpha_{11}-\alpha_{22}\right|+\frac{1}{2}\left|\beta_{12}\right|, \frac{1}{2}\left|\alpha_{22}-\alpha_{33}\right|+\frac{1}{2}\left|\beta_{23}\right|,\right. \\
& \frac{1}{2}\left|\alpha_{11}-\alpha_{33}\right|+\frac{1}{2}\left|\beta_{13}\right|, \frac{1}{4}\left(\left|2 \alpha_{j j}+\beta_{12}\right|+\left|\beta_{13}-\beta_{23}\right|\right), \\
&\left.\frac{1}{4}\left(\left|2 \alpha_{j j}-\beta_{12}\right|+\left|\beta_{13}+\beta_{23}\right|\right)\right\} .
\end{aligned}
$$

Note that if $\|f\|=1$, then $\left|\alpha_{j j}\right| \leq 1$ for $j=1,2,3$ and $\left|\beta_{12}\right| \leq 2,\left|\beta_{13}\right| \leq 2$ and $\left|\beta_{23}\right| \leq 2$.

Theorem 3.2.([17]) Let E be a real finite dimensional Banach space such that ext B_{E} is finite. Suppose that $x \in$ ext B_{E} satisfies that there exists an $f \in E^{*}$ with $f(x)=1=\|f\|$ and $|f(y)|<1$ for every $y \in \operatorname{ext} B_{E} \backslash\{ \pm x\}$. Then, $x \in \exp B_{E}$.

We give another proof of the following theorem which was shown in [22].

Theorem 3.3.([22]) $\exp B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}=\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$.
Proof. It suffices to show that if $T \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)}$, then it is exposed.
Claim: $T=(1,0,0,0,0,0)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=(1,0,0,0,0,0) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by
Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-(1,0,0,0,0,0)^{t}, \pm(0,1,0,0,0,0)^{t}, \pm(0,0,1,0,0,0)^{t}$ are exposed.

Claim: $T=\left(\frac{1}{2},-\frac{1}{2}, 0,1,0,0\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(\frac{1}{4}, 0,0, \frac{7}{4}, 0,0\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-\left(\frac{1}{2},-\frac{1}{2}, 0,1,0,0\right)^{t}$ is exposed.

Claim: $T=\left(\frac{1}{2},-\frac{1}{2}, 0,-1,0,0\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(\frac{1}{4}, 0,0,-\frac{7}{4}, 0,0\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-\left(\frac{1}{2},-\frac{1}{2}, 0,-1,0,0\right)^{t}$ is exposed.

Claim: $T=\left(\frac{1}{2}, 0,-\frac{1}{2}, 0,1,0\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(\frac{1}{4}, 0,0,0, \frac{7}{4}, 0\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-\left(\frac{1}{2}, 0,-\frac{1}{2}, 0,1,0\right)^{t}$ is exposed.

Claim: $T=\left(\frac{1}{2}, 0,-\frac{1}{2}, 0,-1,0\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(\frac{1}{4}, 0,0,0,-\frac{7}{4}, 0\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-\left(\frac{1}{2}, 0,-\frac{1}{2}, 0,-1,0\right)^{t}$ is exposed.

Claim: $T=\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,1\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(0, \frac{1}{4}, 0,0,0, \frac{7}{4}\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,1\right)^{t}$ is exposed.

Claim: $T=\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,-1\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(0, \frac{1}{4}, 0,0,0,-\frac{7}{4}\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-\left(0, \frac{1}{2},-\frac{1}{2}, 0,0,-1\right)^{t}$ is exposed.

Claim: $T=\left(-\frac{1}{2}, 0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(-\frac{1}{4}, 0,0, \frac{5}{4}, 1, \frac{5}{4}\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-\left(-\frac{1}{2}, 0,0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0,-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0,0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}$ are exposed.

Claim: $T=\left(\frac{1}{2}, 0,0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(\frac{1}{4}, 0,0,-\frac{5}{4}, 1, \frac{5}{4}\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-\left(\frac{1}{2}, 0,0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0, \frac{1}{2}, 0,-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0,0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{t}$ are exposed.

Claim: $T=\left(\frac{1}{2}, 0,0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(\frac{1}{4}, 0,0, \frac{5}{4},-1, \frac{5}{4}\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and $3.2,\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in \operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)} \backslash\{ \pm T\}$. Similarly, $-\left(\frac{1}{2}, 0,0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0, \frac{1}{2}, 0, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}, \pm\left(0,0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{t}$ are exposed.

Claim: $T=\left(\frac{1}{2}, 0,0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{t}$ is exposed.
Let $f=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=\left(\frac{1}{4}, 0,0, \frac{5}{4}, 1,-\frac{5}{4}\right) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$. Then, by Theorems 3.1 and Theorem 3.2, $\|f\|=1=f(T)$ and $|f(S)|<1$ for $S \in$ $\left.\operatorname{ext} B_{\mathcal{L}_{s}\left({ }^{2} l_{s}^{3}\right)}\right) \backslash\{ \pm T\}$. Similarly, $-\left(\frac{1}{2}, 0,0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{t}, \pm\left(0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)^{t}, \pm\left(0,0, \frac{1}{2}\right.$, $\left.\frac{1}{2}, \frac{1}{2},-\frac{1}{2},\right)^{t}$ are exposed.

4. The Smooth Points of the Unit Ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$

In this section we will characterize all the smooth points of the unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$.
Theorem 4.1. Let $T=\left(a_{11}, a_{22}, a_{33}, 2 a_{12}, 2 a_{13}, 2 a_{23}\right)^{t} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$. Then, $T \in$ $\operatorname{sm} B_{\left.\mathcal{L}_{s}\left(l^{2}\right)_{\infty}^{3}\right)}$ if and only if

$$
\begin{array}{ll}
& \left(|T((1,1,1),(1,1,1))|=1,0<\left|a_{11}+a_{22}+a_{33}+2 a_{23}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,1),(1,1,1)]\}) \\
\text { or } \quad\left(|T((-1,1,1),(-1,1,1))|=1,0<\left|a_{11}+a_{22}+a_{33}+2 a_{23}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(-1,1,1),(-1,1,1)]\}) \\
\text { or } \quad\left(|T((1,-1,1),(1,-1,1))|=1,0<\left|a_{11}+a_{22}+a_{33}+2 a_{13}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{(1,-1,1),(1,-1,1)\}) \\
\text { or } \quad\left(|T((1,1,-1),(1,1,-1))|=1,0<\left|a_{11}+a_{22}+a_{33}+2 a_{12}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,-1),(1,1,-1)]\}) \\
\text { or } \quad & \left(|T((1,1,1),(1,-1,1))|=1,0<\left|a_{11}-a_{22}+a_{33}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,1),(1,-1,1)]\}) \\
\text { or } \quad\left(|T((1,1,1),(1,1,-1))|=1,0<\left|a_{11}+a_{22}-a_{33}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,1),(1,1,-1)]\}) \\
\text { or } \quad\left(|T((1,1,1),(-1,1,1))|=1,0<\left|-a_{11}+a_{22}+a_{33}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,1),(-1,1,1)]\}) \\
\text { or } \quad\left(|T((1,-1,1),(1,1,-1))|=1,0<\left|-a_{11}+a_{22}+a_{33}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,-1,1),(1,1,-1)]\}) \\
\text { or } \quad\left(|T((1,-1,1),(-1,1,1))|=1,0<\left|a_{11}+a_{22}-a_{33}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,-1,1),(-1,1,1)]\}) \\
\text { or } \quad\left(|T((1,1,-1),(-1,1,1))|=1,0<\left|a_{11}-a_{22}+a_{33}\right|<1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,-1),(-1,1,1)]\}) .
\end{array}
$$

Proof. (\Leftarrow) : Case 1: $|T((1,1,1),(1,1,1))|=1,0<\left|a_{11}+a_{22}+a_{33}+2 a_{23}\right|<$ $1,|T(Y)|<1$ for all $Y \in \Gamma \backslash\{[(1,1,1),(1,1,1)]\}$.

By Theorem 2.1, $\|T\|=1,\left|a_{j j}\right|<1$ for $j=1,2,3,\left|a_{12}\right|<\frac{1}{2},\left|a_{13}\right|<\frac{1}{2},\left|a_{23}\right|<\frac{1}{2}$. Let $l:=T((1,1,1),(1,1,1))=a_{11}+a_{22}+a_{33}+2 a_{12}+2 a_{13}+2 a_{23}$ for some $l \in\{1,-1\}$.

Without loss of generality, we may assume that $l=1$. Obviously,

$$
2\left(a_{12}+a_{13}\right)>0 \text { and } a_{11}+a_{22}+a_{33}+2 a_{23}>0
$$

Let $f \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$ be such that $f(T)=1=\|f\|$ with $\alpha_{11}:=f\left(x_{1} x_{2}\right), \alpha_{22}:=$ $f\left(y_{1} y_{2}\right), \alpha_{33}:=f\left(z_{1} z_{2}\right), \beta_{12}:=f\left(x_{1} y_{2}+x_{2} y_{1}\right), \beta_{13}:=f\left(x_{1} z_{2}+x_{2} z_{1}\right), \beta_{23}:=f\left(y_{1} z_{2}+\right.$ $\left.y_{2} z_{1}\right)$.

We claim that $\alpha_{j j}=1(j=1,2,3)$ and $\beta_{12}=\beta_{13}=\beta_{23}=2$. Let $n_{1} \in \mathbb{N}$ be such that, for $j=1,2,3$,

$$
\begin{aligned}
& \left|a_{j j}\right|+\frac{1}{n_{1}}<1,\left|a_{12}\right|+\frac{1}{n_{1}}<\frac{1}{2},\left|a_{13}\right|+\frac{1}{n_{1}}<\frac{1}{2},\left|a_{23}\right|+\frac{1}{n_{1}}<\frac{1}{2} \\
& |T(Y)|+\frac{10}{n_{1}}<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,1),(1,1,1)]\}
\end{aligned}
$$

By Theorem 2.1, for $n>n_{1}$,

$$
\begin{aligned}
& 1=\left\|\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22} \mp \frac{1}{n}, 2 a_{23}, a_{33}\right)^{t}\right\| \\
& 1=\left\|\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22}, 2 a_{23}, a_{33} \mp \frac{1}{n}\right)^{t}\right\| \\
& 1=\left\|\left(a_{11}, 2 a_{12} \pm \frac{1}{n}, 2 a_{13} \mp \frac{1}{n}, a_{22}, 2 a_{23}, a_{33}\right)^{t}\right\|, \\
& 1=\left\|\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22}, 2 a_{23} \mp \frac{1}{n}, a_{33}\right)^{t}\right\| .
\end{aligned}
$$

It follows that for $n>n_{1}$,
(1) $1 \geq\left|f\left(\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22} \mp \frac{1}{n}, 2 a_{23}, a_{33}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{n}\left(\alpha_{11}-\alpha_{22}\right)\right|$,
(2) $1 \geq\left|f\left(\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22}, 2 a_{23}, a_{33} \mp \frac{1}{n}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{n}\left(\alpha_{11}-\alpha_{33}\right)\right|$,
(3) $1 \geq\left|f\left(\left(a_{11}, 2 a_{12} \pm \frac{1}{n}, 2 a_{13} \mp \frac{1}{n}, a_{22}, 2 a_{23}, a_{33}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{2 n}\left(\beta_{12}-\beta_{13}\right)\right|$,
(4) $1 \geq\left|f\left(\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22}, 2 a_{23} \mp \frac{1}{n}, a_{33}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{n}\left(\alpha_{11}-\frac{1}{2} \beta_{23}\right)\right|$.
$\operatorname{By}(1)-(4), \alpha_{11}=\alpha_{22}=\alpha_{33}, \beta_{12}=\beta_{13}, \alpha_{11}=\frac{1}{2} \beta_{23}$. Let $n_{2} \in \mathbb{N}$ be such that $n_{2}>n_{1}$ and

$$
\begin{aligned}
& 0<2\left(a_{12}+a_{13}\right)-\frac{1}{n_{2}}<2\left(a_{12}+a_{13}\right)+\frac{1}{n_{2}}<1 \\
& 0<a_{11}+a_{22}+a_{33}+2 a_{23}-\frac{1}{n_{2}}<a_{11}+a_{22}+a_{33}+2 a_{23}+\frac{1}{n_{2}}<1
\end{aligned}
$$

By Theorem 2.1, for $n>n_{2}$,

$$
1=\left\|\left(a_{11} \pm \frac{1}{n}, 2 a_{12} \mp \frac{1}{2 n}, 2 a_{13} \mp \frac{1}{2 n}, a_{22} \pm \frac{1}{2 n}, 2 a_{23} \mp \frac{1}{n}, a_{33} \pm \frac{1}{2 n}\right)^{t}\right\| .
$$

Since
$1 \geq\left|f\left(\left(a_{11} \pm \frac{1}{n}, 2 a_{12} \mp \frac{1}{2 n}, 2 a_{13} \mp \frac{1}{2 n}, a_{22} \pm \frac{1}{2 n}, 2 a_{23} \mp \frac{1}{n}, a_{33} \pm \frac{1}{2 n}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{n}\left(\alpha_{11}-\frac{1}{2} \beta_{12}\right)\right|$, so, $\alpha_{11}=\frac{1}{2} \beta_{12}$, hence, $\beta_{12}=\beta_{13}=\beta_{23}$. Therefore,

$$
\begin{aligned}
1 & =f(T)=\sum_{j=1}^{3} a_{j j} \alpha_{j j}+a_{12} \beta_{12}+a_{13} \beta_{13}+a_{23} \beta_{23} \\
& =\left(a_{11}+a_{22}+a_{33}+2 a_{12}+2 a_{13}+2 a_{23}\right) \alpha_{11} \\
& =\alpha_{11}
\end{aligned}
$$

hence, $\alpha_{j j}=1$ for $j=1,2,3$ and $\beta_{12}=\beta_{13}=\beta_{23}=2$. Hence, T would be smooth in $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$.

Case 2: $|T((1,1,1),(1,-1,1))|=1,0<\left|a_{11}-a_{22}+a_{33}\right|<1,|T(Y)|<1$ for all $Y \in$ $\Gamma \backslash\{[(1,1,1),(1,-1,1)]\}$

By Theorem 2.1, $\|T\|=1,\left|a_{j j}\right|<1$ for $j=1,2,3,\left|a_{12}\right|<\frac{1}{2},\left|a_{23}\right|<\frac{1}{2}$. Let $l:=T((1,-1,1),(1,1,1))=a_{11}-a_{22}+a_{33}+2 a_{13}$ for some $l \in\{1,-1\}$. Without loss of generality, we may assume that $l=1$. Obviously,

$$
2 a_{13}>0, a_{11}-a_{22}+a_{33}>0
$$

Let $f \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$ be such that $f(T)=1=\|f\|$ with $\alpha_{11}:=f\left(x_{1} x_{2}\right), \alpha_{22}:=$ $f\left(y_{1} y_{2}\right), \alpha_{33}:=f\left(z_{1} z_{2}\right), \beta_{12}:=f\left(x_{1} y_{2}+x_{2} y_{1}\right), \beta_{13}:=f\left(x_{1} z_{2}+x_{2} z_{1}\right), \beta_{23}:=f\left(y_{1} z_{2}+\right.$ $\left.y_{2} z_{1}\right)$. We claim that $\alpha_{j j}=1=-\alpha_{22}$ for $j=1,3$ and $\beta_{12}=\beta_{23}=0, \beta_{13}=2$. Let $n_{1} \in \mathbb{N}$ be such that, for $j=1,2,3$,

$$
\begin{aligned}
& \left|a_{j j}\right|+\frac{1}{n_{1}}<1,\left|a_{12}\right|+\frac{1}{n_{1}}<\frac{1}{2},\left|a_{23}\right|+\frac{1}{n_{1}}<\frac{1}{2} \\
& |T(Y)|+\frac{10}{n_{1}}<1 \text { for all } Y \in \Gamma \backslash\{[(1,-1,1),(1,1,1)]\}
\end{aligned}
$$

Let $n_{2} \in \mathbb{N}$ be such that, $n_{2}>n_{1}$ and for $j=1,2,3$,

$$
0<2 a_{13}-\frac{1}{n_{2}}<2 a_{13}+\frac{1}{n_{2}}<1
$$

and

$$
0<a_{11}-a_{22}+a_{33}-\frac{1}{n_{2}}<a_{11}-a_{22}+a_{33}+\frac{1}{n_{2}}<1
$$

By Theorem 2.1, for $n>n_{2}$,

$$
\begin{aligned}
& 1=\left\|\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22} \pm \frac{1}{n}, 2 a_{23}, a_{33}\right)^{t}\right\|, \\
& 1=\left\|\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22}, 2 a_{23}, a_{33} \mp \frac{1}{n}\right)^{t}\right\|,
\end{aligned}
$$

$$
\begin{aligned}
& 1=\left\|\left(a_{11}, 2 a_{12} \pm \frac{1}{n}, 2 a_{13}, a_{22}, 2 a_{23} \mp \frac{1}{n}, a_{33}\right)^{t}\right\|, \\
& 1=\left\|\left(a_{11}, 2 a_{12} \pm \frac{1}{n}, 2 a_{13}, a_{22}, 2 a_{23} \pm \frac{1}{n}, a_{33}\right)^{t}\right\|, \\
& 1=\left\|\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13} \mp \frac{1}{n}, a_{22}, 2 a_{23}, a_{33}\right)^{t}\right\| .
\end{aligned}
$$

It follows that for $n>n_{2}$,
(1') $1 \geq\left|f\left(\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22} \pm \frac{1}{n}, 2 a_{23}, a_{33}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{n}\left(\alpha_{11}+\alpha_{22}\right)\right|$,
(2') $1 \geq\left|f\left(\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13}, a_{22}, 2 a_{23}, a_{33} \mp \frac{1}{n}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{n}\left(\alpha_{11}-\alpha_{33}\right)\right|$,
(3') $1 \geq\left|f\left(\left(a_{11}, 2 a_{12} \pm \frac{1}{n}, 2 a_{13}, a_{22}, 2 a_{23} \mp \frac{1}{n}, a_{33}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{2 n}\left(\beta_{12}-\beta_{23}\right)\right|$,
(4') $1 \geq\left|f\left(\left(a_{11}, 2 a_{12} \pm \frac{1}{n}, 2 a_{13}, a_{22}, 2 a_{23} \pm \frac{1}{n}, a_{33}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{2 n}\left(\beta_{12}+\beta_{23}\right)\right|$,
(5') $1 \geq\left|f\left(\left(a_{11} \pm \frac{1}{n}, 2 a_{12}, 2 a_{13} \mp \frac{1}{n}, a_{22}, 2 a_{23}, a_{33}\right)^{t}\right)\right|=\left|1 \pm \frac{1}{n}\left(\alpha_{11}-\frac{1}{2} \beta_{13}\right)\right|$.
$\operatorname{By}\left(1^{\prime}\right)-\left(5^{\prime}\right), \alpha_{11}=-\alpha_{22}=\alpha_{33}, \beta_{12}=\beta_{23}=0, \alpha_{11}=\frac{1}{2} \beta_{13}$. It follows that

$$
\begin{aligned}
1 & =f(T)=\sum_{j=1}^{3} a_{j j} \alpha_{j j}+a_{12} \beta_{12}+a_{13} \beta_{13}+a_{23} \beta_{23} \\
& =\left(a_{11}-a_{22}+a_{33}\right) \alpha_{11}+2 a_{13} \alpha_{11} \\
& =\left(1-2 a_{13}\right) \alpha_{11}+2 a_{13} \alpha_{11} \\
& =\alpha_{11}
\end{aligned}
$$

hence, $\beta_{13}=2$ and $\alpha_{j j}=1=-\alpha_{22}$ for $j=1,3$. Hence, T would be smooth in $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$. Since the proofs of other cases are similar as those in the cases 1 and 2, we omit the proofs.
(\Rightarrow) : If not, then we have two cases.
Case 1: $\operatorname{Norm}(T)$ is a singleton, where

$$
\operatorname{Norm}(S):=\{X \in \Gamma:|S(X)|=\|S\|\}
$$

for $S \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$.
Notice that

$$
\begin{aligned}
& 1 \geq\left|a_{11}+a_{22}+a_{33}+2 a_{12}\right|, \\
& 1 \geq\left|a_{11}+a_{22}+a_{33}+2 a_{13}\right|, \\
& 1 \geq\left|a_{11}+a_{22}+a_{33}+2 a_{23}\right|, \\
& 1 \geq\left|-a_{11}+a_{22}+a_{33}\right|, \\
& 1 \geq\left|a_{11}-a_{22}+a_{33}\right|, \\
& 1 \geq\left|a_{11}+a_{22}-a_{33}\right| .
\end{aligned}
$$

We have ten subcases as follows:

$$
\begin{array}{cl}
& \left(|T((1,1,1),(1,1,1))|=1, a_{11}+a_{22}+a_{33}+2 a_{23}=0 \text { or } \pm 1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,1),(1,1,1)]\}) \\
\text { or } \quad\left(|T((-1,1,1),(-1,1,1))|=1, a_{11}+a_{22}+a_{33}+2 a_{23}=0, \text { or } \pm 1\right. \text {, } \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(-1,1,1),(-1,1,1)]\}) \\
\text { or } \quad\left(|T((1,-1,1),(1,-1,1))|=1, a_{11}+a_{22}+a_{33}+2 a_{13}=0, \text { or } \pm 1\right. \text {, } \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{(1,-1,1),(1,-1,1)\}) \\
\text { or } \quad\left(|T((1,1,-1),(1,1,-1))|=1, a_{11}+a_{22}+a_{33}+2 a_{12}=0, \text { or } \pm 1\right. \text {, } \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,-1),(1,1,-1)]\}) \\
\text { or } \quad\left(|T((1,1,1),(1,-1,1))|=1, a_{11}-a_{22}+a_{33}=0 \text { or } \pm 1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,1),(1,-1,1)]\}) \\
\text { or } \quad\left(|T((1,1,1),(1,1,-1))|=1, a_{11}+a_{22}-a_{33}=0 \text { or } \pm 1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,1),(1,1,-1)]\}) \\
\text { or } \quad\left(|T((1,1,1),(-1,1,1))|=1,-a_{11}+a_{22}+a_{33}=0 \text { or } \pm 1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,1),(-1,1,1)]\}) \\
\text { or } \quad\left(|T((1,-1,1),(1,1,-1))|=1,-a_{11}+a_{22}+a_{33}=0 \text { or } \pm 1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,-1,1),(1,1,-1)]\}) \\
\text { or } \quad\left(|T((1,-1,1),(-1,1,1))|=1, a_{11}+a_{22}-a_{33}=0 \text { or } \pm 1,\right. \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,-1,1),(-1,1,1)]\}) \\
\text { or } \quad\left(|T((1,1,-1),(-1,1,1))|=1, a_{11}-a_{22}+a_{33}=0 \text { or } \pm 1\right. \text {, } \\
& |T(Y)|<1 \text { for all } Y \in \Gamma \backslash\{[(1,1,-1),(-1,1,1)]\}) .
\end{array}
$$

Subcase 1: $|T((1,1,1),(1,1,1))|=1, a_{11}+a_{22}+a_{33}+2 a_{23}=0$ or $\pm 1,|T(Y)|<$ 1 for all $Y \in \Gamma \backslash\{[(1,1,1),(1,1,1)]\}$.

Suppose that $a_{11}+a_{22}+a_{33}+2 a_{23}=0$. Let

$$
f_{1}=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=(0,0,0,2,2,0)
$$

and

$$
f_{2}=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=(1,1,1,2,2,2) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}
$$

By Theorem 3.1, $\left\|f_{k}\right\|=1=f_{k}(T)$ for $k=1,2$. Hence, $T \notin s m B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$. This is a contradiction.

Suppose that $a_{11}+a_{22}+a_{33}+2 a_{23}=1$. For $|t| \leq 2$, let

$$
f_{t}=(1,1,1, t, t, 0) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}
$$

By Theorem 3.1, $\left\|f_{t}\right\|=1=f_{t}(T)$ for $|t| \leq 2$. Hence, $T \notin s m B_{\mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)}$. This is a contradiction.

Suppose that $a_{11}+a_{22}+a_{33}+2 a_{23}=-1$. For $|t| \leq 2$, let

$$
f_{t}=(-1,-1,-1, t, t, 0) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}
$$

By Theorem 3.1, $\left\|f_{t}\right\|=1=f_{t}(T)$ for $|t| \leq 2$. Hence, $T \notin s m B_{\mathcal{L}_{s}\left(l_{l}^{2} l_{\infty}\right)}$. This is a contradiction.
Subcase 2: $|T((1,1,-1),(-1,1,1))|=1, a_{11}-a_{22}+a_{33}=0$ or $\pm 1,|T(Y)|<$ 1 for all $Y \in \Gamma \backslash\{[(1,1,-1),(-1,1,1)]\}$.

Suppose that $a_{11}-a_{22}+a_{33}=0$. Then $a_{13}=\frac{1}{2}$. Let

$$
f_{1}=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=(1,-1,1,0,2,0)
$$

and

$$
f_{2}=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=(0,0,0,0,2,0) \in \mathcal{L}_{s}\left(l^{2} l_{\infty}^{3}\right)^{*} .
$$

By Theorem 3.1, $\left\|f_{k}\right\|=1=f_{k}(T)$ for $k=1,2$. Hence, $T \notin s m B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$.
Suppose that $a_{11}-a_{22}+a_{33}=1$. Let

$$
f_{1}=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=(1,-1,1,0,0,0)
$$

and

$$
f_{2}=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=(1,-1,1,0,1,0) \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*} .
$$

By Theorem 3.1, $\left\|f_{k}\right\|=1=f_{k}(T)$ for $k=1,2$. Hence, $T \notin s m B_{\mathcal{L}_{s}\left(2 l_{\infty}^{3}\right)}$.
Suppose that $a_{11}-a_{22}+a_{33}=-1$. Let

$$
f_{1}=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=-(1,-1,1,0,0,0)
$$

and

$$
f_{2}=\left(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{12}, \beta_{13}, \beta_{23}\right)=-(1,-1,1,0,1,0) \in \mathcal{L}_{s}\left(l_{l}^{2} l_{\infty}^{3}\right)^{*} .
$$

By Theorem 3.1, $\left\|f_{k}\right\|=1=f_{k}(T)$ for $k=1,2$. Hence, $T \notin s m B_{\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)}$.
Since the proofs of other subcases are similar as those of the above, we omit the proofs.
Case 2: $|\operatorname{Norm}(T)| \geq 2$.
There exist $X_{1} \neq X_{2} \in \Gamma$ such that $\left|T\left(X_{k}\right)\right|=1$ for $k=1,2$. Note that $\operatorname{sign}\left(T\left(X_{k}\right)\right) \delta_{X_{k}} \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)^{*}$ and

$$
\left\|\operatorname{sign}\left(T\left(X_{k}\right)\right) \delta_{X_{k}}\right\|=1=\operatorname{sign}\left(T\left(X_{k}\right)\right) \delta_{X_{k}}(T)
$$

for $k=1,2$, which shows that T is not smooth. This is a contradiction. Therefore, we complete the proof.

Acknowledgements

The author is thankful to the referee for the careful reading and considered suggestions leading to a better presented paper.

References

[1] R. M. Aron, Y. S. Choi, S. G. Kim and M. Maestre, Local properties of polynomials on a Banach space, Illinois J. Math., 45(2001), 25-39.
[2] Y. S. Choi, H. Ki and S. G. Kim, Extreme polynomials and multilinear forms on l_{1}, J. Math. Anal. Appl., 228(1998), 467-482.
[3] Y. S. Choi and S. G. Kim, The unit ball of $\mathcal{P}^{2}\left(l_{2}^{2}\right)$, Arch. Math. (Basel), 71(1998), 472-480.
[4] Y. S. Choi and S. G. Kim, Extreme polynomials on c_{0}, Indian J. Pure Appl. Math., 29(1998), 983-989.
[5] Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space $\mathcal{P}\left({ }^{2} l_{1}\right)$, Results Math., 36(1999), 26-33.
[6] Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(p=$ $1,2, \infty)$, Indian J. Pure Appl. Math., 35(2004), 37-41.
[7] S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London, 1999.
[8] S. Dineen, Extreme integral polynomials on a complex Banach space, Math. Scand., 92(2003), 129-140.
[9] B. C. Grecu, Geometry of 2-homogeneous polynomials on l_{p} spaces, $1<p<\infty$, J. Math. Anal. Appl., 273(2002), 262-282 .
[10] B. C. Grecu, G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Unconditional constants and polynomial inequalities, J. Approx. Theory, 161(2009), 706-722.
[11] S. G. Kim, Exposed 2-homogeneous polynomials on $\mathcal{P}\left({ }^{2} l_{p}^{2}\right)(1 \leq p \leq \infty)$, Math. Proc. R. Ir. Acad., 107 A (2007), 123-129.
[12] S. G. Kim, The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, Extracta Math., 24(2009), 17-29.
[13] S. G. Kim, The unit ball of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. R. Ir. Acad., 111A(2011), 79-94.
[14] S. G. Kim, The unit ball of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J., 53(2013), 295-306.
[15] S. G. Kim, Smooth polynomials of $\mathcal{P}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Math. Proc. R. Ir. Acad., 113A(2013), 45-58.
[16] S. G. Kim, Extreme bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J., $\mathbf{5 3}(2013)$, 625-638.
[17] S. G. Kim, Exposed symmetric bilinear forms of $\mathcal{L}_{s}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J., 54(2014), 341-347.
[18] S. G. Kim, Exposed bilinear forms of $\mathcal{L}\left({ }^{2} d_{*}(1, w)^{2}\right)$, Kyungpook Math. J., $\mathbf{5 5}(2015)$, 119-126.
[19] S. G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math., 13(2016), 2827-2839.
[20] S. G. Kim, The unit ball of $\mathcal{L}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$, Bull. Korean Math. Soc., 54(2017), 417-428.
[21] S. G. Kim, Extremal problems for $\mathcal{L}_{s}\left({ }^{2} \mathbb{R}_{h(w)}^{2}\right)$, Kyungpook Math. J., $57(2017)$, 223232.
[22] S. G. Kim, The unit ball of $\mathcal{L}_{s}\left({ }^{2} l_{\infty}^{3}\right)$, Comment. Math. Prace Mat., 57(2017), 1-7.
[23] S. G. Kim, The geometry of $\mathcal{L}_{s}\left({ }^{3} l_{\infty}^{2}\right)$, Commun. Korean Math. Soc., 32(2017), 991997.
[24] S. G. Kim, The geometry of $\mathcal{L}\left({ }^{3} l_{\infty}^{2}\right)$ and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials, Extracta Math., 33(1)(2018), 5166.
[25] S. G. Kim, Extreme bilinear form on \mathbb{R}^{n} with the supremum norm, Period. Math. Hungar., $\mathbf{7 7}$ (2018), 274-290.
[26] S. G. Kim, Exposed polynomials of $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$, Extracta Math., 33(2)(2018), 127-143.
[27] S. G. Kim, The unit ball of the space of bilinear forms on \mathbb{R}^{3} with the supremum norm, Commun. Korean Math. Soc., 34(2019), 487-494.
[28] S. G. Kim, Smooth polynomials of the space $\mathcal{P}\left({ }^{2} \mathbb{R}_{h\left(\frac{1}{2}\right)}^{2}\right)$, Preprint.
[29] S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131(2003), 449-453.
[30] G. A. Munoz-Fernandez, S. Revesz and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand., 105(2009), 147-160.
[31] G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl., 340(2008), 1069-1087.
[32] R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl., 221(1998), 698-711.

