DOI QR코드

DOI QR Code

Parameter and Modeling Uncertainty Analysis of Semi-Distributed Hydrological Model using Markov-Chain Monte Carlo Technique

Markov-Chain Monte Carlo 기법을 이용한 준 분포형 수문모형의 매개변수 및 모형 불확실성 분석

  • Choi, Jeonghyeon (Division of Earth Environmental System Science (Major of Environmental Engineering), Pukyong National University) ;
  • Jang, Suhyung (Integrated Water Resources Management Center, K-water Research Institute) ;
  • Kim, Sangdan (Department of Environmental Engineering, Pukyong National University)
  • 최정현 (부경대학교 지구환경시스템과학부 (환경공학전공)) ;
  • 장수형 (K-water 연구원 통합물관리연구소) ;
  • 김상단 (부경대학교 환경공학과)
  • Received : 2020.06.17
  • Accepted : 2020.08.26
  • Published : 2020.09.30

Abstract

Hydrological models are based on a combination of parameters that describe the hydrological characteristics and processes within a watershed. For this reason, the model performance and accuracy are highly dependent on the parameters. However, model uncertainties caused by parameters with stochastic characteristics need to be considered. As a follow-up to the study conducted by Choi et al (2020), who developed a relatively simple semi-distributed hydrological model, we propose a tool to estimate the posterior distribution of model parameters using the Metropolis-Hastings algorithm, a type of Markov-Chain Monte Carlo technique, and analyze the uncertainty of model parameters and simulated stream flow. In addition, the uncertainty caused by the parameters of each version is investigated using the lumped and semi-distributed versions of the applied model to the Hapcheon Dam watershed. The results suggest that the uncertainty of the semi-distributed model parameters was relatively higher than that of the lumped model parameters because the spatial variability of input data such as geomorphological and hydrometeorological parameters was inherent to the posterior distribution of the semi-distributed model parameters. Meanwhile, no significant difference existed between the two models in terms of uncertainty of the simulation outputs. The statistical goodness of fit of the simulated stream flows against the observed stream flows showed satisfactory reliability in both the semi-distributed and the lumped models, but the seasonality of the stream flow was reproduced relatively better by the distributed model.

Keywords

References

  1. Abdi, B., Bozorg-Haddad, O., and Loaiciga, H. A. (2020). Analysis of the effect of inputs uncertainty on riverine water temperature predictions with a Markov chain Monte Carlo (MCMC) algorithm, Environmental Monitoring and Assessment, 192(2), 1-15. https://doi.org/10.1007/s10661-019-7904-3
  2. Ahmadisharaf, E., Camacho, R. A., Zhang, H. X., Hantush, M. M., and Mohamoud, Y. M. (2019). Calibration and validation of watershed models and advances in uncertainty analysis in TMDL studies, Journal of Hydrologic Engineering, 24(7), 03119001. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001794
  3. Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances, Philosophical Transactions of the Royal Society of London, 53, 370-418. https://doi.org/10.1098/rstl.1763.0053
  4. Bishop, C. M. (2006). Pattern recognition and machine learning, New York, Springer.
  5. Box, G. and Cox, D. (1964). An analysis of transformations, Journal of the Royal Statistical Society: Series B (Methodological), 26, 211-243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
  6. Camacho, R. A., Martin, J. L., MacAnally, W., Dias-Ramirez, J., Rodriguez, H., Sucsy, P., and Zhang, S. (2015). A comparison of bayesian methods for uncertainty analysis in hydrauic and hydrodynamic modeling, Journal of the American Water Resources Association, 51(5), 1372-1393. https://doi.org/10.1111/1752-1688.12319
  7. Campbell, E., Fox, D., and Bates, B. (1999). A bayesian approach to parameter estimation and pooling in nonlinear flood event models, Water Resources Research, 35, 211-220. https://doi.org/10.1029/1998WR900043
  8. Carpenter, T. M. and Georgakakos, K. P. (2004). Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrological model, Journal of Hydrology, 298, 202-221. https://doi.org/10.1016/j.jhydrol.2004.03.036
  9. Choi, H. S. (2013). Parameter estimation of SWAT model using SWAT-CUP in Seom-river experimental watershed, Journal of the Korean Society of Civil Engineers, 33(2), 529-536 [Korean Literature] https://doi.org/10.12652/Ksce.2013.33.2.529
  10. Choi, J., Kim, R., and Kim, S. (2020). Development of distributed one-dimensional hydrologic model based on soil moisture simulation, Journal of Korean Society on Water Environment, 36(3), 229-244 [Korean Literature]. https://doi.org/10.15681/KSWE.2020.36.3.229
  11. Chowdhury, S. and Sharma, A. (2007). Mitigating parameter bias in hydrological modelling due to uncertainty in covariates, Journal of Hydrology, 340, 197-204. https://doi.org/10.1016/j.jhydrol.2007.04.010
  12. Chung, S. W., Gassman, P. W., Kramer, L. A., Williams, J. R., and Gu, R. R. (1999). Validation of EPIC for two watersheds in southwest Iowa, Journal of Environmental Quality, 28(3), 971-979. https://doi.org/10.2134/jeq1999.00472425002800030030x
  13. Engeland, K., Xu, C. Y., and Gottschalk, L. (2005). Assessing Uncertainties in a conceptual water balance model using Bayesian methodology, Hydrological Sciences Journal, 50(1), 45-63. https://doi.org/10.1623/hysj.50.1.45.56334
  14. Georgakakos, K. P., Seo, D. J., Gupta, H., Schaake, J., and Butts, M. B. (2004). Towards the characterization of streamflow simulation uncertainty through multimodel ensembles, Journal of Hydrology, 298, 222-241. https://doi.org/10.1016/j.jhydrol.2004.03.037
  15. Green, C. H., Tomer, M. D., Di Luzio, M., and Arnold, J. G. (2006). Hydrologic evaluation of the soil and water assessment tool for a lager tile-drained watershed in Iowa, Transactions of the American Society of Agricultural and Biological Engineers, 49(2), 413-422.
  16. Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, Z. F. (2009). Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling, Journal of Hydrology, 377, 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  17. Han, F. and Zheng, Y. (2016). Multiple-response Bayesian calibration of watershed water quality models with significant input and model structure errors, Advances in Water Resources, 88, 109-123. https://doi.org/10.1016/j.advwatres.2015.12.007
  18. Harmon, R. and Challenor, P. (1997). A markov chain monte carlo method for estimation and assimilation into models, Ecological Modeling, 101, 41-59. https://doi.org/10.1016/S0304-3800(97)01947-9
  19. Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their application, Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
  20. Hensen, J. L. M. and Lamberts, R. (2012). Building performance simulation for design and operation, Hensen, J. L. M. and Lamberts, R. (eds.), Routledge, London, U.K.
  21. Jia, H., Xu, T., Liang, S., Zhao, P., and Xu, C. (2018). Bayesian framework of parameter sensitivity, uncertainty, and identifiability analysis in complex water quality models, Environmental Modelling & Software, 104, 13-26. https://doi.org/10.1016/j.envsoft.2018.03.001
  22. Joh, H. Park, J., Jang, C., and Kim, S. (2012). Comparing prediction uncertainty analysis techniques of SWAT simulated streamflow applied to Chungju dam watershed, Journal of Korea Water Resources Association, 45(9), 861-874. [Korean Literature] https://doi.org/10.3741/JKWRA.2012.45.9.861
  23. Joseph, J. F. and Guillaume, J. H. A. (2013). Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT, Environmental modelling & software, 46, 292-298. https://doi.org/10.1016/j.envsoft.2013.03.012
  24. Kavetski, D., Kuczera, G., and Franks, S. W. (2006a). Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resources Research, 42, W03407. https://doi.org/10.1029/2005WR004368
  25. Kavetski, D., Kuczera, G., and Franks, S. W. (2006b). Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resources Research, 42, W03408. https://doi.org/10.1029/2005WR004376
  26. Kim, J. K., Son, K. H., Noh, J. W., and Lee, S. U. (2008). Estimation of suspended sediment load in Imha-Andong watershed using SWAT model, Korean Society of Environmental Engineers, 30(12), 1209-1217.
  27. Kim, M. H., Heo, T. Y., and Chung, S. W. (2013). Uncertainty analysis on the simulations of runoff and sediment using SWAT-CUP, Journal of Korean Society on Water Environment, 29(5), 681-690. [Korean Literature]
  28. Kim, R., Won, J., Choi, J., Lee, O., and Kim, S. (2020). Application of Bayesian approach to parameter estimation of TANK model: Comparison of MCMC and GLUE methods, Journal of Korean Society on Water Environment, 36(4), 300-313 [Korean Literature] https://doi.org/10.15681/KSWE.2020.36.4.300
  29. Kim, S. M. (2017). Evaluation of applicability of SWAT-CUP program for hydrologic parameter calibration in hardware watershed, Journal of the Korean Soiety of Agricultural Engineers, 59(3), 63-70. [Korean Literature] https://doi.org/10.5389/KSAE.2017.59.3.063
  30. Knighton J., Lennon, E., Bastidas, L., and White, E. (2016). Stormwater detention system parameter sensitivity and uncertainty analysis using SWMM, Journal of Hydrologic Engineering, 21(8), 05016014. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001382
  31. Korea Rural Development Administration (KRDA). (2010). Korean Soil Information System (KSIS), http://soil.rda.go.kr (accessed Sept. 2020).
  32. Kuczera, G. (1983). Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty, Water Resources Research, 19, 1151-1162. https://doi.org/10.1029/WR019i005p01151
  33. Kuczera, G. and Parent, E. (1998). Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm, Journal of Hydrology, 211, 69-85. https://doi.org/10.1016/S0022-1694(98)00198-X
  34. Kwon, H. H., Kim, J. G., and Park, S. (2013). Derivation of flood frequency curve with uncertainty of rainfall and rainfall-runoff model, Journal of Korea Water Resources Association, 46(1), 59-71. [Korean Literature] https://doi.org/10.3741/JKWRA.2013.46.1.59
  35. Kwon, H. H., Kim, J. G., Lee, J. S., and Na, B. K. (2012). Uncertainty assessment of single event rainfall-runoff model using Bayesian model, Journal of Korea Water Resources Association, 25(5), 505-516. [Korean Literature]
  36. Kwon, H. H., Moon, Y. I., Kim, B. S., and Yoon, S. Y. (2008). Parameter optimization and uncertainty analysis of the NWS-PC rainfall-runoff model coupled with Bayesian Markov Chain Monte Carlo inference scheme, Journal of Korean Society Civil Engineering, 28(4B), 383-392. [Korean Literature]
  37. Lee, E. and Seo, D. (2011). Flow calibration and validation of Daechung lake watershed, Korea using SWAT-CUP, Journal of Korea Water Resources Association, 44(9), 711-720. [Korean Literature] https://doi.org/10.3741/JKWRA.2011.44.9.711
  38. Li, Z., Shao, Q., Xu, Z., and Cai, X. (2010). Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: A case study of SWAT model applied to Yingluoxia watershed in northwest China, Journal of Hydrology, 385(1-4), 76-83. https://doi.org/10.1016/j.jhydrol.2010.01.025
  39. Liang, S., Jia, H., Xu, C., Xu, T., and Melching, C. (2016). A Bayesian approach for evaluation of the effect of water quality model parameter uncertainty on TMDLs: A case study of Miyun Reservoir, Science of the Total Environment, s560-561, 44-54.
  40. Lim, J., Kwon, H., Joo, H., Wang, W., Lee, J., You, Y., and Kim, H. (2019). Uncertainty analysis of stage-discharge curve using Bayesian and Bootstrap method, Journal of Wetlands Research, 21(2), 114-124. https://doi.org/10.17663/JWR.2019.21.2.114
  41. Liu, Y. R., Li, Y. P., Huang, G. H., Zhang, J. L., and Fan, Y. R. (2017). A Bayesian-based multilevel factorial analysis method for analyzing parameter uncertainty of hydrological model, Journal of Hydrology, 553, 750-762. https://doi.org/10.1016/j.jhydrol.2017.08.048
  42. Long, D., Longuevergne, L., and Scanlon, B. (2014). Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites, Water Resource Research, 50, 1131-1151. https://doi.org/10.1002/2013WR014581
  43. Makowski, D., Wallach, D., and Tremblay, M. (2002). Using a bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods, Agronomie, 22, 191-203. https://doi.org/10.1051/agro:2002007
  44. Marshall, L., Nott, D., and Sharma, A. (2007). Towards dynamic catchment modelling: a Bayesian hierarchical modelling framework, Hydrological Processes, 21, 847-861. https://doi.org/10.1002/hyp.6294
  45. Ministry of Envrionment (ME). (2007). Environmental Geography Information System (EGIS), http://http://egis.me.go.kr (accessed Sept. 2020).
  46. Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models: Part 1 - A discussion of principles, Journal of Hydrology, 10, 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  47. National Geographic Information Institute (NGII). (2014). National Territory Informaion Platform (NTIP), http://map.ngii.go.kr (accessed Sept. 2020).
  48. Patil, S. D. and Stieglitz, M. (2015). Comparing spatial and temporal transferability of hydrological model parameters, Journal of Hydrology, 525, 409-417. https://doi.org/10.1016/j.jhydrol.2015.04.003
  49. Raftery, A. E. and Lewis S. M. (1995). Implementing MCMC, Markov Chain Monte Carlo in Practice, Gilks, W. R., Richardson, S., and Spiegel-halter, D. J. (eds.), Chapman & Hall, London, 115-130.
  50. Refsgaard, J. C. and Storm, B. (1996). Construction calibration and validation of hydrological models, In: Abbott, M.B., Refsgaard, J.C. (Eds.), Distributed hydrological modelling, Water Science and Technology Library, 22, Kluwer Academic Publishers, Dordrecht, The Netherlands, 41-54.
  51. Ryu, J., Kang, H., Choi, J., Kong, D., Gum, D., Jang, C., and Lim, K. (2012). Application of SWAT-CUP for streamflow auto-calibration at Soyang-gang dam watershed, Journal of Korean Society on Water Environment, 28(3), 347-358. [Korean Literature]
  52. Schoups, G. and Vrugt, J. A. (2010). A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-gaussian errors, Water Resources Research, 46, W10531. https://doi.org/10.1029/2009WR008933
  53. Silvestro, F., Gabellani, S., Rudari, R., Delogu, F., Laiolo, P., and Boni, G. (2015). Uncertainty reduction and parameter estimation of a distributed hydrological model with ground and remot-sensing data, Hydrology and Earth System Sciences, 19, 1727-1751. https://doi.org/10.5194/hess-19-1727-2015
  54. Sun, M., Zhang, X., Huo, Z., Feng, S., Huang, G., and Mao, X. (2015). Uncertainty and sensitivity assessments of an agricultural-hydrological model (RZWQM2) using the GLUE method, Journal of Hydrology, 534, 19-30. https://doi.org/10.1016/j.jhydrol.2015.12.045
  55. Sun, N., Hall, M., Hong, B., and Zhang, L. (2012). Impact of SWMM catchment discretization: Case study in Syracuse, New York, Journal of Hydrologic Engineering, 19(1), 223-234. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000777
  56. Swann, A. and Koven, C. (2017). A direct estimate of the seasonal cycle of evapotranspiration over the Amazon basin, Journal of Hydrometeorology, 18, 2173-2185. https://doi.org/10.1175/JHM-D-17-0004.1
  57. Swiler, L. P. (2006). Bayesian methods in engineering design problems, Sandia National Laboratories report, SAND: 2005-3294.
  58. Teweldebrhan, A. T., Burkhart, J. F., and Schuler, T. V. (2018). Parameter uncertainty analysis for an operational hydrological model using residual-based and limits of acceptability approaches, Hydrology and Earth System Sciences, 22, 5021-5039. https://doi.org/10.5194/hess-22-5021-2018
  59. Todini, E. (2007). Hydrological catchment modelling: Past, present and future, Hydrology and Earth System Sciences, 11, 468-482. https://doi.org/10.5194/hess-11-468-2007
  60. Zhang, W. and Li, T. (2015). The influence of objective function and acceptability threshold on uncertainty assessment of an urban drainage hydraulic model with generalized likelihood uncertainty estimation methodology, Water Resources Management, 29, 2059-2072. https://doi.org/10.1007/s11269-015-0928-8
  61. Zhang, W., Li, T., and Dai, M. (2015). Uncertainty assessment of water quality modeling for a small-scale urban catchment using the GLUE methodology: a case study in Shanghai, China, Environmental Science and Pollution Research, 22(12), 9241-9249. https://doi.org/10.1007/s11356-015-4085-7
  62. Zhang, Y., Pan, M., Sheffield, J., Siemann, A., Fisher, C., Liang, M., Beck, H., Wanders, N., MacCracken, R., Houser, P., Zhou, T., Lettenmaier, D., Pinker, R., Bytheway, J., Kummerow, C., and Wood, E. (2018). A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010, Hydrology and Earth System Sciences, 22, 241-263. https://doi.org/10.5194/hess-22-241-2018