DOI QR코드

DOI QR Code

Analysis of flow speed distribution in the acoustic streaming generated by two piston sources

두 개의 피스톤음원으로부터 발생된 음향유동의 유속분포 해석

  • Kim, Jungsoon (Department of Electrical Engineering, Tongmyong University) ;
  • Jung, Jihee (General Utility Co. Ltd.) ;
  • Kim, Moojoon (Department of Physics, Pukyong National University)
  • Received : 2005.06.21
  • Accepted : 2020.08.07
  • Published : 2020.09.30

Abstract

To analyze the flow distribution formed by multiple acoustic sources, the distribution of acoustic streaming speed caused by an ultrasonic transducer composed of two identical piezoelectric vibrators was examined for various angles between the sound sources. In order to measure the distribution of the speed along the acoustic axis of the transducer, a simple measurement method using a droplet indicator having density similar to that of water is suggested. The simulation results calculated by a numerical method and experimental results showed a similar tendency, and the change of flow speed distribution with the intersection angle between acoustic beams radiated from two acoustic sources was analyzed.

복수의 음향유동에 의해 형성되는 유속의 분포를 해석하기 위하여 동일한 두 개의 압전진동자로 구성된 초음파 트랜스듀서에 의해 형성되는 음향유동에 대해 음원 사이의 각도에 따른 음향유동속도의 분포를 조사하였다. 거리에 따른 유체입자속도의 분포를 측정하기 위하여 물과 동일한 밀도를 갖는 표시액을 사용한 간단한 측정방법을 제안하였다. 수치해석적인 방법으로 시뮬레이션한 결과와 실험결과는 유사한 경향을 나타내었으며, 두 음원으로부터 방사된 평면파의 방사빔이 교차하는 각도에 따른 음향유동의 속도 분포의 변화를 해석할 수 있었다.

Keywords

References

  1. G. Clement, J. Sun, T. Giesecke, and K. Hynynen, "A hemisphere array transducer for non-invasive ultrasound brain therapy and surgery," Phys. Med. Biol. 45, 3707-3719 (2000). https://doi.org/10.1088/0031-9155/45/12/314
  2. F. Wu, Z. Wang, H. Zhu, W. Chen, J. Zou, J. Bai, C. Jin, F. Xie, and H. Su, "Feasibility of US-guided high-intensity focused ultrasound treatment in patientswith advanced pancreatic cancer: initial experience," Radiology, 263, 1034-1040 (2005).
  3. E. Constanciel, W. N'Djin, F. Bessiere, F. Chavrier, D. Grinberg, A. Vignot, P. Chevalier, J. Chapelon, and C. Lafon, "Design and evaluation of a transesophageal HIFU probe for ultrasound-guided cardiac ablation: simulation of a HIFU mini-maze procedure and preliminary ex vivo trials," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60, 1868-1883 (2013). https://doi.org/10.1109/TUFFC.2013.2772
  4. K. Harada, T. Azuma, T. Inoue, T. Takeo, S. Takagi, Y. Matsumoto, N. Sugita, and M. Mamoru, "Study on high-intensity focused ultrasound focal position control using intracorporeal acoustic device," Procedia. CIRP 5, 290-293 (2013). https://doi.org/10.1016/j.procir.2013.01.057
  5. J. Taurozzi, V. Hackley, and M. Wiesner, "Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment issues and recommendations," Nanotoxicology, 5, 711-729 (2011). https://doi.org/10.3109/17435390.2010.528846
  6. X. Li, Y. Yang, and D. Weiss, "Theoretical and experimental study on ultrasonic dispersion of nanoparticles for strengthening cast Aluminum Alloy A356," Metall. Sci. and Technol. 26-2, 12-20 (2008).
  7. K. Sato, J. Li, H. Kamiya, and T. Ishigaki, "Ultrasonic dispersion of $TiO_2$ nanoparticles in aqueous suspension" J. Am. Ceram. Soc. 91, 2481-2487 (2008). https://doi.org/10.1111/j.1551-2916.2008.02493.x
  8. C. Lin and L. Chen, "Emulsification characteristics of three- and two-phase emulsions prepared by the ultrasonic emulsification method," Fuel Process. Technol. 87, 309-317 (2006). https://doi.org/10.1016/j.fuproc.2005.08.014
  9. C. Lin and L. Chen, "Engine performance and emission characteristics of three-phase diesel emulsions prepared by an ultrasonic emulsification method," Fuel, 85, 593-600 (2006). https://doi.org/10.1016/j.fuel.2005.09.007
  10. S. Nii, S. Kikumoto, and H. Tokuyama, "Quantitative approach to ultrasonic emulsion separation," Ultrason. Sonochem. 16, 145-149 (2009). https://doi.org/10.1016/j.ultsonch.2008.07.005
  11. T. Kozuka, K. Yasui, T. Tuziuti, A. Towata, and Y. Iida, "Acoustic standing-wave field for manipulation in air," Jpn. J. Appl. Phys. 47, 4336-4338 (2008). https://doi.org/10.1143/JJAP.47.4336
  12. M. Takeuchi, H. Abe, and K. Yamanouchi, "Ultrasonic micromanipulator using visual feedback," Jpn. J. Appl. Phys. 35, 2244-3247 (1996). https://doi.org/10.1143/JJAP.35.2244
  13. J. Lei, P. Glynn-Jones, and M. Hill, "Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices," Lab. Chip. 13, 2133-2143 (2013). https://doi.org/10.1039/c3lc00010a
  14. H. Mulvana, S. Cochran, and M. Hill, "Ultrasound assisted particle and cell manipulation on-chip," Adv. Drug Deliv. Rev. 65, 1600-1610 (2013). https://doi.org/10.1016/j.addr.2013.07.016
  15. S. Liu, Y. Yang, Z. Ni, X. Guo, L. Luo, J. Tu, D. Zhang, and J. Zhang, "Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields," Sensors, 17, 1664 (2017). https://doi.org/10.3390/s17071664
  16. M. Kim and J. Kim, "Nanoparticle dispersionizer by ultrasonic cavitation and streaming," Jpn. J. Appl. Phys. 57, 07LE03 (2018). https://doi.org/10.7567/JJAP.57.07LE03
  17. M. Settnes and H. Bruus, "Forces acting on a small particle in an acoustical field in a viscous fluid," Phys. Rev. E 85, 016327 (2012). https://doi.org/10.1103/PhysRevE.85.016327
  18. P. Muller, R. Barnkob, M. Jensen, and H. Bruus, "A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaminginduced drag forces," Lab. Chip, 12, 4617 (2012). https://doi.org/10.1039/c2lc40612h
  19. J. Kim, J. Kim, M. Kim, K. Ha, and A. Yamada, "Arrayed ultrasonic transducers on arc surface for plane wave synthesis," Jpn. J. Appl. Phys. 43, 3061- 3062 (2004). https://doi.org/10.1143/JJAP.43.3061
  20. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2008), Chap. 12.
  21. T. Kamakura, T. Sudo, K. Matsuda, and Y. Kumamoto, "Time evolution of acoustic streaming from a planar ultrasound source," J. Acoust. Soc. Am. 100, 132-138 (1996). https://doi.org/10.1121/1.415948