DOI QR코드

DOI QR Code

Moored measurement of the ambient noise and analysis with environmental factors in the coastal sea of Jeju Island

제주 연해 수중 주변소음 계류 측정과 환경 변화에 따른 분석

  • 정인용 (제주대학교 해양시스템공학과) ;
  • 민수홍 (제주대학교 해양시스템공학과) ;
  • 팽동국 (제주대학교 해양시스템공학과)
  • Received : 2020.07.07
  • Accepted : 2020.08.31
  • Published : 2020.09.30

Abstract

Underwater ambient noise was measured at the eastern and western costal sites of Jeju Island where the water depth was 20 m by a hydrophone moored at mid-depth (10 m) for 4 months. These eastern and western sites were selected as potential sites for offshore wind power generator and the current wave energy generator, respectively. Ambient noise was affected by environmental data such as wind and wave, which were collected from nearby weather stations and an observation station. Below 100 Hz, ambient noise was changed about 5 dB ~ 20 dB due to low and high tide. Below 1 kHz, wave and wind effects were the main source for ambient noise, varying up to 25 dB. Ambient noise was strongly influenced by wave at lower frequency and by wind at higher frequency up to over 1 kHz. The higher frequency range over 10 kHz was influenced by rainfall and biological sources, and the spectrum was measured about 10 dB higher than the peak spectrum level from Wenz curve at this frequency range.

본 연구는 풍력, 파력발전기가 설치되는 제주 동부와 서부 수심 20 m 연해에서 4개월동안 수중 청음기를 중층(10 m)에 계류하여 주변소음을 측정하였다. 측정 소음레벨에 영향을 미치는 기상정보는 측정 지점 근처 기상대와 관측소를 이용하여 자료를 수집하였다. 100 Hz 이하의 주파수 대역에서 조석의 영향으로 간조와 만조, 조금과 사리일 때 약 5 dB ~ 20 dB가량 변화를 보였다. 파랑과 바람의 영향은 1 kHz 이하의 주파수 대역에서 25 dB이내로 큰 변화를 보였으며 파랑은 저주파 대역에 영향을 주었고 바람은 1 kHz 이상의 고주파 대역까지도 영향을 주었다. 10 kHz 이상의 고주파 대역에 영향을 주는 요인으로 강우와 생물 소음이 있고 웬즈 곡선 최대값에 비해 약 10 dB 높게 측정되었다.

Keywords

References

  1. R. J. Urick, Principles of Underwater Sound (McGraw-Hill, New York, 1983), pp. 328-376.
  2. P. H. Dahl, J. H. Miller, D. H. Cato, and R. K.Andrew, "Underwater ambient noise," Acoust. Today, 3, 23-33 (2007). https://doi.org/10.1121/1.2961145
  3. S. B. Kim, "A study on the sources of ambient sea noise in the coastal water of pusan" (in Korean), Bull. Korean Fish. Tech. Soc. 26, 180-183 (1990).
  4. X. Lurton, An Introduction to Underwater Acoustics 2nd ed. (Springer, Heidelberg, 2002), pp.107-118.
  5. V. O. Knudsen, R. S. Alford, and J. W. Emling, "Underwater ambient noise," J. Mar. Res. 7, 410-429 (1948).
  6. G. M. Wenz, "Acoustic ambient noise in the ocean: spectra and sources," J. Acoust. Soc. Am. 34, 1936-1956 (1962). https://doi.org/10.1121/1.1909155
  7. B. K. Choi, B. C. Kim, C. S. Kim, and B. N. Kim, "Analysis of dependence on wind speed and ship traffic of underwater ambient noise at shallow sea surrounding the Korean Peninsula" (in Korean), J. Acoust. Soc. Kr. 22, 233-241 (2003).
  8. W. J. Richardson, C. R. Greene Jr., C. I. Malme, and D. H. Thomson, Marine Mammals and Noise (Academic Press, San Diego, 1998), pp.110-113.
  9. H.-J. Ko, I.-C. Pang, and T.-H. Kim, "Relations between wave and wind at 5 stations around the Korean Peninsula" (in Korean), J. Earth Science Soc. Kr. 26 240-252 (2005).
  10. M. R. Willis, M. Broudic, C. Haywood, I. Masters, and S. Thomas, "Measuring underwater background noise in high tidal flow environments," Renewable Energy, 49, 255-258 (2013). https://doi.org/10.1016/j.renene.2012.01.020
  11. J. A. Nystuen, "Rainfall measurements using underwater ambient noise," J. Acoust. Soc. Am. 79, 972-982 (1986). https://doi.org/10.1121/1.393695
  12. J. A. Scrimger, D. J. Evans, and W. Yee, "Underwater noise due to rain-Open ocean measurements," J. Acoust. Soc. Am. 85, 726-731 (1989). https://doi.org/10.1121/1.397598
  13. A. Prosperetti, L. A. Crum, and H. C. Pumphrey, "The underwater noise of rain," J. Geophys. Res. 94, 3255-3259 (1989). https://doi.org/10.1029/JC094iC03p03255
  14. B. C. Kim, B. K. Choi, H. C. Song, and S. K. Byun, "Measurements of oceanic ambient noise generated by rainfall" (in Korean), J. Acoust. Soc. Kr. 13, 49-56 (1994).