DOI QR코드

DOI QR Code

The Effects of Object Size and Reaching Distance on Upper Extremity Movement

물체 크기와 뻗기 거리가 상지 움직임에 미치는 영향

  • Bae, Su-Young (Dong-A University Daesin Intermediate Care Hospital) ;
  • Kim, Tae-Hoon (Dept. of Occupational Therapy, Dongseo University)
  • 배수영 (동아대학교 대신요양병원) ;
  • 김태훈 (동서대학교 보건의료계열 작업치료학과)
  • Received : 2020.03.30
  • Accepted : 2020.04.24
  • Published : 2020.04.30

Abstract

Objectives : The purpose of this study is to investigate the effect of object size and reaching distance on kinematic factors of the upper limb while performing arm reaching for normal subjects. Methods : The subjects of this study were 30 university students who were in D university in Busan, and the measuring tool was CMS-70P(Zebris Medizintechnik Gmbh, Germany), a three-dimensional motion analyzer. The task had six conditions. The average velocity of motion, average acceleration, maximum velocity, and the velocity definite number of movements were measured according to changes in object size(2cm, 10cm) and reaching distance(15%, 37.5%, 60%) when they performed arm reaching. The general characteristics of the subject were technical statistics. One-way ANOVA measurement was used to compare variables when the arm reaching task was performed from two object sizes to three reaching distance, and the post-test was conducted with Tukey test. In addition, an independent t-test was used to analyze the kinematic differences according to the two object sizes at three reaching distances. A two-way ANOVA measurement (3×2 Two-way ANOVA measurement) was performed to identify the interaction of the reaching distance(15%, 37.5%, 60%) and the object size(2cm, 10cm). The statistical significance level α was set to .05. Results : When the size of the object increased, the velocity and maximum velocity also increased, but the definite number of velocity decreased. When the reaching distance increased, the velocity and maximum velocity increased, whereas the definite number of velocity decreased. Conclusion : The clinical significance of this study could be utilized as the baseline data for grading object size and reaching distances when the reaching training is implemented for patients whose central nervous system was damaged.

목적 : 정상인을 대상으로 팔뻗기 수행 시 물체 크기와 뻗기 거리가 상지의 운동형상학적 요소에 미치는 영향을 알아보고자 하였다. 연구 방법 : 대상자는 부산시 D대학교에 재학 중인 대학생 30명이며 측정 도구는 삼차원 동작 분석기인 CMS-70P(Zebris Medizintechnik Gmbh, Germany)를 사용하였다. 과제는 6가지 조건이다. 팔뻗기 수행시 물체 크기(2cm, 10cm)와 뻗기 거리(15%, 37.5%, 60%)의 변화에 따른 움직임의 평균 속도, 평균 가속도, 최대 속도, 속도의 정점수를 측정하였다. 대상자의 일반적 특성은 기술통계를 사용하였다. 두 가지 물체 크기에서 세 가지 뻗기 거리로 팔뻗기 과제를 수행했을 때 변수를 비교하기 위해 일원분산분석(One-way ANOVA measure)으로 분석하였고, 사후검정은 Tukey 검정을 실시하였다. 또한 세 가지 뻗기 거리에서 두 가지 물체 크기에 따른 운동형상학적 차이를 분석하기 위해서 독립 t검정(Independent t-test)을 사용하였다. 팔뻗기 거리(15%, 37.5%, 60%)와 물체 크기(2cm, 10cm)에 따른 상호작용효과를 확인하기 위해 이원분산분석(3×2 Two-way ANOVA measure)을 실시하였다. 통계적 유의수준 α는 .05로 설정하였다. 결과 : 정상인은 물체 크기와 뻗기 거리의 변화에 따라 상지 움직임에 유의한 차이가 있었다. 물체 크기가 동일한 경우 뻗기 거리가 길어질수록 평균 속도, 최대속도가 증가하였고, 속도의 정점 수는 감소하였다. 뻗기 거리가 동일한 경우 물체 크기가 커질수록 평균 속도, 최대 속도가 증가하였고 속도의 정점 수는 감소하였다. 물체 크기와 뻗기 거리의 변화는 평균 가속도에 영향을 미치지 않았으며 유의한 차이가 없었다. 결론 : 과제를 시간적, 공간적 특성으로 제한하는 것은 대상자의 상지 움직임에도 영향을 미치게 된다. 따라서 본 연구의 결과를 토대로 신경학적 기능수준에 따라 세밀하게 등급화된 과제제공에 도움이 될 것으로 사료된다.

Keywords

References

  1. Amini, D., Kannenberg, K., Bodison, S., Chang, P., Colaianni, D., Goodrich., B., et al. (2014). Occupational therapy practice framework: Domain & process (3rd ed.). American Journal of Occupational Therapy, 68(1), 1-48. doi.org/10.5014/ajot.2014.682006
  2. Chiba, R., Kaminishi, K., Takakusaki, K., & Ota, J. (2017). Multisensory alterations in visual, vestibular and proprioceptive cues for modeling of postural control. 2017 International Symposium on Micro-NanoMechatronics and Human Science. doi.org/10.1109/MHS.2017.8305207
  3. Dean, M., Wu, S. W., & Maloney, L. T. (2007). Trading off speed and accuracy in rapid, goal-directed movements. Journal of Vision, 7(5), 1-12. doi.org/10.1167/7.5.10
  4. Fisk, J. D., Fisk, J. D., & Goodale, M. A. (1989). The effects of instructions to subjects on the programming of visually directed reaching movements. Journal of Motor Behavior, 21(1), 5-19. doi.org/10.1080/00222895.1989.10735461
  5. Gori, J., Rioul, O., & Guiard, Y. (2018). Speed-accuracy tradeoff. ACM Transactions on Computer-Human Interaction, 25(5), 1-33. doi.org/10.1145/3231595
  6. Gribble, P. L., Mullin, L. I., Cothros, N., & Mattar, A. (2003). Role of co-contraction in arm movement accuracy. Journal of Neurophysiology, 89(5), 2396-2405. doi.org/10.1152/jn.01020.2002
  7. Gulde, P., & Hermsdorfer, J. (2018). Smoothness metrics in complex movement tasks. Frontiers in Neurology, 9, 1-7. doi.org/10.3389/fneur.2018.00615
  8. Hussain, N., Murphy, M. A., & Sunnerhagen, K. S. (2018). Upper limb kinematics in stroke and healthy controls using target-to-target task in virtual reality. Frontiers in Neurology, 9, 1-9. doi.org/10.3389/fneur.2018.00300
  9. Jessop, A., & Pain, M. (2016), Maximum velocities in flexion and extension action for sport. Journal of Human Kinetics, 50(3), 37-44. doi.org/10.1515/hukin-2015-0139
  10. Jones, T. A. (2017). Motor compensation and its effects on neural reorganization after stroke. Nature Reviews Neuroscience, 18, 267-280. doi.org/10.1038/nrn.2017.26
  11. Kim, K. S., Yoo, H. S., Jung, D. H., & Jeon, H. S. (2010). Analysis of movement time and trunk motions according to target distances and use of sound and affected side during upper limb reaching task in patients with hemiplegia. Physical Therapy Korea, 17(1), 36-42.
  12. Kramer, P., & Hinojosa, J. (2011). Frames of reference for pediatric occupational therapy (3rd ed.). Lippincott Williams & Wilkins. doi.org/10.5014/ajot.49.7.733
  13. Lundy-Ekman, L. (2013). Neuroscience-E-Book: Fundamentals for rehabilitation (4th ed.). Elsevier Health Sciences.
  14. Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson's disease under self-determined maximal speed and visually cued conditions. Brain, 121(4), 755-766. doi.org/10.1093/brain/121.4.755
  15. Mandon, L., Boudarham, J., Robertson, J., Bensmail, D., Roche, N., Roby-Brami, A. (2016). Faster reaching in chronic spastic stroke patients comes at the expense of arm-trunk coordination. Neurorehabilitation and Neural Repair, 30(3), 209-220. https://doi.org/10.1177/1545968315591704
  16. Massie, C. L., & Malcolm, M. P. (2012). Instructions emphasizing speed improves hemiparetic arm kinematics during reaching in stroke. Neurorehabilitation, 30(4), 341-350. doi.org/10.3233/NRE-2012-0765
  17. Messier, J., & Kalaska, J. F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research, 125, 139-152. doi.org/10.1007/s002210050669
  18. Newell, K. M. (1986). Constraints on the development of coordination. Motor Development in Children: Aspects of Coordination and Control, 341-360. doi.org/10.1007/97894-009-4460-2_19
  19. Newell, K. M., & Valvano, J. (1998). Movement science: Therapeutic intervention as a constraint in learning and relearning movement skills. Scandinavian Journal of Occupational Therapy, 5, 51-57. doi.org/10.3109/110381298 09035730
  20. Peternel, L., Sigaud, O., & Babic, J. (2017). Unifying speed-accuracy trade-off and cost-benefit trade-off in human reaching movements. Frontiers in Human Neuroscience, 11, 615. doi.org/10.3389/fnhum.2017.00615
  21. Plamondon, R. (1995). A kinematic theory of rapid human movements. Biological Cybernetics, 72, 295-307. doi.org/10.1007/s004220050132
  22. Potgieser, A. R. E., & De Jong, B. M. (2011). Different distal-proximal movement balances in right-hand left-hand writing may hint at differential premotor cortex involvement. Human Movement Science, 30, 1072-1078. doi.org/10.1016/j.humov.2011.02.005
  23. Rose, D. J., & Christina, R. W. (2006). A multilevel approach to the study of motor control and learning (2nd ed.). Benjamin Cummings, Allyn & Bacon.
  24. Roy, E., Kalbfleisch, L., Bryden, P., Barbour, K., & Black, S. (2000). Visual aiming movements in Alzheimer's disease. Brain and Cognition, 10, 380-384.
  25. Shumway-Cook, A., & Woollacott, M. H. (2012). Motor control: Translating research into clinical practice (4th ed.). Lippincott, Williams & Wilkins.
  26. Thelen, E., Skala, K. D., & Kelso, J. S. (1987). The dynamic nature of early coordination: Evidence from bilateral leg movements in young infants. Developmental Psychology, 23(2), 179-186. doi.org/10.1037/0012-1649.23.2.179
  27. Tresch, M. C., Saltiel, P., D'Avella, A., & Bizzi, E. (2002). Coordination and localization in spinal motor systems. Brain Research Reviews, 40(1-3), 66-79. https://doi.org/10.1016/S0165-0173(02)00189-3
  28. Vingerhoets, G. (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5(151), 1-17. doi.org/10.3389/fpsyg.2014.00151
  29. Volman, M. J. M., Wijnroks, A., & Vermeer, A. (2002). Effect of task context on reaching performance in children with spastic hemiparesis. Clinical Rehabilitation, 16, 684-692. doi.org/10.1191/0269215502cr540oa
  30. Wang, S. M., Kuo, L. C., Ouyang, W. C., Hsu, H. M., & Ma, H. I. (2018). Effects of object size and distance on reaching kinematics in patients with schizophrenia. Hong Kong Journal of Occupational Therapy, 31(1), 22-29. doi.org/10.1177/1569186118759610
  31. Wierzbicka, M. M., Wiegner, A. W., & Shahani, B. T. (1986). Role of agonist and antagonist muscles in fast arm movements in man. Experimental Brain Research, 63(2), 331-340. doi.org/10.1007/BF00236850
  32. Wing, A. M., & Miller, E. (1984). Research note: Peak velocity timing invariance. Psychological Research, 46, 121-127. doi.org/10.1007/BF00308597
  33. Wu, C. Y., Lin, K. C., Lin, K. H., Chang, C. W., & Chen, C. L. (2005). Effects of task constraints on reaching kinematics by healthy adults. Perceptual and Motor Skills, 100, 983-994. doi.org/10.2466/pms.100.4.983-994
  34. Wu, C. Y., Trombly, C. A., Lin, K. C., & Tickle-Degnen, L. (2000). A kinematic study of contextual effects on reaching performance in persons with and without stroke: Influences of object availability. Archives of Physical Medicine and Rehabilitation, 81(1), 95-101. doi.org/10.1053/apmr.2000.0810095
  35. Yoo, W. G., Park, J. H., & Kim, M. H. (2005). Velocity of reaching and vertical displacement during various bimanual reaching target activities. The Journal of Korean Society of Occupational Therapy, 13(2), 41-49.
  36. Yoo, W. G., Park, J. H., Shin, H. K., Yoo, E. Y., & Choi, J. D. (2004). Effects of distance of target on the movement of arm and trunk during. The Journal of Korean Society of Occupational Therapy, 12(2), 61-71.