DOI QR코드

DOI QR Code

An Analysis of the Thermal Flow Characteristics in Engine-Room and VTRU in accordance with Application of Thermoelectric Device Cooling System to Prevent Overheating of the Korean Navy Ship VRTU

해군 함정 VRTU의 과열방지를 위한 열전소자 냉각장치의 적용에 따른 기관실 및 VRTU 내부 열 유동특성 분석

  • Received : 2020.05.13
  • Accepted : 2020.09.04
  • Published : 2020.09.30

Abstract

This study conducted joint research with the Navy logistics command ship technology research institute to resolve the occurrence of naval vessel's high-temperature warning and equipment shutdown caused by VRTU overheating during summer operation and the dispatch of troops to equatorial regions. The cooling effect was checked according to the installation of a thermoelectric device cooling system, and heat flow and heat transfer characteristics inside VRTU was analyzed using Computational Fluid Dynamics. In addition, the temperature distribution inside the engine room was assessed through interpretation, and the optimal installation location to prevent VRTU overheating was identified. As a result, the average volume temperature inside the VRTU decreased by approximately 10 ℃ with the installation of the cooling system, and the fan installed in the cooling system made the heat circulation smooth, enhancing the cooling effect. The inside of the engine room showed a high-temperature distribution at the top of the engine room, and the end of the HVAC duct diffuser showed the lowest temperature distribution.

본 연구에서는 대한민국 해군 함정의 하절기 운용 및 적도지병 파병 간 발생하고 있는 VRTU 과열로 인한 고온경보 발생과 장비정지 발생현상을 해결하기 위하여 해군 군수사령부 함정기술연구소와 공동연구를 수행하였다. 열전소자 냉각장치 설치에 따른 냉각효과를 확인하고, 전산 열 유동해석을 수행하여 VRTU 내부 열 유동특성을 분석하였다. 또 해석을 통해 기관실(디젤엔진룸) 내부의 온도분포를 살펴보고 VRTU 과열방지를 위한 최적의 설치위치를 알아보았다. 분석결과, 냉각장치를 설치함에 따라 VRTU 내부 평균 체적온도가 약 10 ℃ 감소하는 것을 확인하였으며 냉각장치에 설치된 Fan은 열 순환을 원활하게 하여 냉각효과를 높였다. 기관실 내부는 디젤엔진 상부에서 높은 온도분포를 나타냈고 통풍관 디퓨저 하부에서 가장 낮은 온도분포를 보였다. 열전소자 냉각장치는 높은 냉각성능을 나타내었으며, VRTU는 과열방지를 위하여 기관실의 통풍관 디퓨저 하부에 설치하는 것이 적절할 것으로 판단된다.

Keywords

References

  1. Y.I.Jung, S.M.Choi, "A study on the internal temperature reduction of PKG-A water-jet-room by subsituting heat insulation materials," Journal of Korean Society for Quality management, Vol. 47, no.3, pp. 425-435, 2019. DOI : https://dor.org/10.7466/JKSQM.2019.47.3-425
  2. Y.H.Jeon, Y.G.Chang, M.Y.Kang, J.H.Kim, "A study on Development Direction of Cooling Improvement of Equipment control panel," Naval technology, Vol. 86, pp. 148-169, 2018.
  3. D.H.Kim, G.H.Lee, "Development status of new technology for thermoelectric cooling element," Machinery and Materials, Korea Institute of Materials Science, vol.16, no.2, pp. 95-103, 2004.
  4. S.Y.Yoo, J.P.Hong, W.S.Sim, "A study on the performance of thermoelectric module and thermoelectric cooling system," Korean Journal of air-conditioning and refrigeration engineering, Vol. 16, no.1, pp. 62-69, 2004.
  5. G.G.Lee, B.C.U, H.W.Lee, "Current status of development and application technology for thermoelectric semiconductor," Machinery and Materials, Korea Institute of Materials Science, Vol. 11, no.39, pp. 31-41, April 1999.
  6. Syaza Yasim, CFD Modeling of Thermoelectric Air Duct System for Cooling of Building Envelope, Bachelor, Universiti Teknologi PETRONAS, 2017.
  7. TaeSungSNE "The Standard of CAE, Application of ANSYS CFD," pp. 6-9.