DOI QR코드

DOI QR Code

An Analysis of Flood Damage Influence by Urban Spatial Factors

도시공간적 요인에 의한 침수피해의 영향 분석

  • Park, Kiyong (Urban and Regional Planning, Michigan State University) ;
  • Oh, Hoo (Department of Disaster Prevention Engineering, Chungbuk National University) ;
  • Jeon, Won-Sik (Division of Human & Environmental Design) ;
  • Lee, Eui Hoon (School of Civil Engineering, Chungbuk National University)
  • Received : 2020.05.25
  • Accepted : 2020.09.04
  • Published : 2020.09.30

Abstract

This study investigated the long-term measures to minimize flood damage in the event of flooding in urban areas. The relationship between urban spatial factors and the impact of flood damage was analyzed, focusing on non-structural measures. The urban spatial factors were categorized into three parts: open space, disaster prevention facilities, and urbanization sectors. Multiple regression analysis was used to investigate how urban spatial factors influence flood damage. As a result of the analysis, the crucial factors, such as the reduced green areas and parks included in the open space sectors, resulted in an increased flood damage potential. The posterior factors, such as the population density and GRDP included in the urbanization sector concurrently led to an increase in the flood damage potential. Therefore, to better adapt to climate change, it is necessary to establish urban spatial plans strategically, such as green areas and parks. Meanwhile, the population density and GRDP are also the main factors causing flood damage. Therefore, when used appropriately in terms of resilience, it will serve as adaptations and recovery.

본 연구는 도시지역에 침수피해가 발생하였을 경우, 장기적인 측면에서 침수피해를 최소화 할 수 있는 방안을 마련하기 위해 비구조적인 대책에 초점을 맞추어 도시공간적인 요인과 침수피해의 영향 관계를 분석하였다. 도시공간적인 요인에 의한 침수피해 영향을 분석하고자 다중회귀 분석(Multiple Regression Analysis)을 활용하여 적용하였다. 도시공간적인 요인은 Open Space, 방재시설, 도시화 부문으로 유형화하였다. 분석 결과, 침수피해 지역은 일정한 지역에 한정되어 발생하며, 공간적으로 매우 높은 상관성을 보이고 있음을 알 수 있다. Open Space의 면적이 넓을수록 침수피해액이 감소하는 바, 녹지, 공원 등의 감소가 침수피해를 증가시키고 있음을 확인할 수 있어, 도시의 안전이라는 기능적인 부분에 있어서 침수피해를 예방하고 대응하기 위해 매우 중요한 요인임을 알 수 있다. 도시화 부문에 포함되는 인구밀도, 지역내총생산(GRDP) 등의 요인은 그 값이 클수록 침수피해액은 증가하는 것으로 분석되어, 침수피해를 유발시키는 원인으로 판단된다. 따라서 기후변화에 적응하기 위해서는 녹지, 공원 등의 도시공간 계획을 전략적으로 수립해야 하며, 인구밀도, 지역내총생산(GRDP) 등은 침수피해를 유발시키는 주요 요인이므로 회복력 차원에서 적절하게 활용한다면 대응과 복구 역할을 할 것으로 판단된다.

Keywords

References

  1. S. E. Lee, S. H. Kim, "New water resource technology paradigm for the water generation", Korea Water Resources Association, Vol. 48, No. 1, pp. 68-75, 2015. https://doi.org/10.12972/ksmer.2015.52.1.068
  2. Q. Dihn, S. Balica, I. Popescu, A. Jonoski, "Climate change impact on flood hazard, vulnerability and risk of the Long Xuyen quadrangle in the mekong delta", International Journal of River Basin Management, Vol. 10, pp. 103-120, 2012. DOI: http://dx.doi.org/10.1080/15715124.2012.663383
  3. B. K. Kim, D. W. Jang, N. Jang, D. M. Yang, "Derivation of risk factors for urban floods considering climate change", Crisisonomy, Vol. 7, No. 1, pp. 125-142, 2011.
  4. K. Park, J. H. Won, "Analysis on distribution characteristics of building use with risk zone classification based on urban flood risk assessment", International Journal of Disaster Risk Reduction, Vol. 38:101192, pp. 1-10, 2019. DOI: https://doi.org/10.1016/j.ijdrr.2019.101192
  5. T. Beatley, "Planning and sustainability: The elements of a new(improved?) paradigm", Joulnal of Planning Literature, Vol. 9, No. 4, pp. 383-395, 1995. DOI: https://doi.org/10.1177/088541229500900405
  6. P. R. Berke, T. Beatley, "After the hurricane: Linking recovery to sustainable development in the caribbean", Disaster Prevention and Management, Vol. 8, No. 5, pp. 370-452, 1999. DOI: https://doi.org/10.1108/dpm.1999.8.5.370.8
  7. K. Park, M. H. Lee, "The development and application of the urban flood risk assessment model for reflecting upon urban planning elements", Water, Vol. 11, No. 5, pp. 1-17, 2019. DOI: https://doi.org/10.3390/w11050920
  8. S. Y. Shin, H. R. Kim, Analyzing Relationships between Land Use Characteristics and Flood Damage Areas, Seoul Development Institute, Korea, pp. 1-67, 2011.
  9. K. Hideki, Urban disaster prevention. Tokyo, Japan, 2011.
  10. D. McEvoy, S. Lindley, J. Handley, "Adaptation and mitigation in urban areas: synergies and conflicts", Proceedings of the Institution of Civil Engineers-Municipal Engineer, Vol. 159, No. 4, pp. 185-191, 2006. DOI: http://dx.doi.org/10.1680/muen.2006.159.4.185
  11. H. S. Hwang, An Index and Evaluation of Vulnerability to Climate Change in Urban Area, Master's thesis, Inha University, pp. 1-72, 2012.
  12. S. Y. Shin, C. Y. Park, "Analyzing relationships between land use characteristics and flood damage areas: The case of Seoul", Korea Research Institute for Human Settlements, Vol. 81, pp. 3-20, 2014. DOI: https://doi.org/10.15793/kspr.2014.81.001
  13. I. Burton, R. W. Kates, G. F. White. The environment as hazard(2nd ed), New York: The Guilford Press, 1993.
  14. B. Norman, “Principles for an intergovernmental agreement for coastal planning and climate change in australia,” Habitat International, Vol. 33, No. 3, pp. 293-299, 2008. DOI: https://doi.org/10.1016/j.habitatint.2008.10.002
  15. IPCC, Climate Change 2007: Impact, adaptation and vulnerability, fourth assessment report, Cambridge: Cambridge University Press, UK, 2007.
  16. United Nations Inter-Agency Secretariat, Living with risk; A global review of disaster reduction initiatives, I.S.D.R Editor. UN Publications, Geneva, Switzerland, 2002.
  17. S. Meerow, J. P. Newell, "Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit", Landscape and Urban Planning, Vol. 159, pp. 62-75, 2017. DOI: https://doi.org/10.1016/j.landurbplan.2016.10.005
  18. J. E. Kang et al., Urban Renewal Strategy for Adapting to Climate Change: Use of Green Infrastructure on Flood Mitigation, Korea Environment Institute, Korea, pp. 1-206, 2011.
  19. H. J. Lee et al., "A study on model of heavy rain risk prediction using influencing factors of flood damage", Korean Society of Hazard Mitigation, Vol. 16, No. 3, pp. 39-45, 2016. DOI: https://doi.org/10.9798/KOSHAM.2016.16.3.39
  20. C. Y. Park, S. Y. Shin, E. J. Son, "Classifying flood prone areas in Seoul using multivariate analysis", Korean Society of Hazard Mitigation, Vol. 13, No. 2, pp. 245-255, 2013. DOI: https://doi.org/10.9798/KOSHAM.2013.13.2.245
  21. J. M. Shepherd, "Evidence of urban-induced precipitation variability in arid climate regimes", Journal of Arid Environments, Vol. 67, pp. 607-628, 2006. DOI: https://doi.org/10.1016/j.jaridenv.2006.03.022
  22. R. C. Balling Jr, S. W. Brazel, "Recent changes in Phoenix, Arizona summertime diurnal precipitation patterns", Theoretical and Applied Climatology, Vol. 38, pp. 50-54, 1987. DOI: https://doi.org/10.1007/BF00866253
  23. T. S. Oh, Y. I. Moon, "Effect analysis of precipitation events according to an urbanization", Korean Society of Civil Engineers, Vol. 30, No. 4, pp. 413-427, 2013.
  24. J. Foster, A. Lowe, S. Winkelman, The value of green infrastructure for urban climate adaptation, The Center for Clean Air Policy, Washington, DC 20002, 2011, pp. 1-35.
  25. G. Lindsey, G. Knaap, "Willingness to pay for urban green projects". Journal of the American Planning Association, Vol. 65, pp. 297-313, 1999. DOI: https://doi.org/10.1080/01944369908976059
  26. C. Sebald, Towards an integrated flood vulnerability index : A flood vulnerability assessment, Master of Science (MSc), 2010. DOI: https://doi.org/10.13140/RG.2.1.4933.8000
  27. R. A. Pielke, M. W. Downton, "Precipitation and damaging floods: trends in the United States, 1932-97". Journal of Climate, Vol. 13, No. 20, pp. 3625-3637, 2000. DOI: https://doi.org/10.1175/1520-0442(2000)013<3625:PADFTI>2.0.CO;2
  28. Y. S. Kim, MRA Revision Model based on CBR for Cost Prediction in Early Stage, Master's thesis, University of Seoul, pp. 1-92, 2010.
  29. W. K. Ko, An analysis of input social sciences data by step of the SPSS, Kyeungmunsa, 2011, pp. 1-461.
  30. T. K. Kim, U-can regression analysis, Human and Welfare, 2006, pp. 1-330.
  31. H. C. Kim, Statistical analysis completed by oneself, Hakjisa, 2013, pp. 1-460.
  32. K. Y. Kwak, Business statistics analysis: IBM SPSS statistics, Kyeungmunsa, 2011, pp. 1-555.
  33. J. O. Lim, Estimation of Flood Damage Based on Multi-Dimensional Flood Damage Assessment and Multiple Regression Analysis: A Case Study for the PyeongChang River Basin, Master's thesis, Inha University, pp. 1-91, 2019.