DOI QR코드

DOI QR Code

TRANSIENT THERMOELASTIC STRESS ANALYSIS OF A THIN CIRCULAR PLATE DUE TO UNIFORM INTERNAL HEAT GENERATION

  • GAIKWAD, KISHOR R. (PG DEPARTMENT OF MATHEMATICS, NES, SCIENCE COLLEGE) ;
  • NANER, YOGESH U. (PG DEPARTMENT OF MATHEMATICS, NES, SCIENCE COLLEGE)
  • Received : 2020.05.16
  • Accepted : 2020.09.07
  • Published : 2020.09.25

Abstract

The present work aims to analyzed the transient thermoelastic stress analysis of a thin circular plate with uniform internal heat generation. Initially, the plate is characterized by a parabolic temperature distribution along the z-direction given by T = T0(r, z) and perfectly insulated at the ends z = 0 and z = h. For times t > 0, the surface r = a is subjected to convection heat transfer with convection coefficient hc and fluid temperature T. The integral transform method used to obtain the analytical solution for temperature, displacement, and thermal stresses. The associated thermoelastic field is analyzed by making use of the temperature and thermoelastic displacement potential function. Numerical results are carried out with the help of computational software PTC Mathcad Prime-3.1 and shown in figures.

Keywords

References

  1. W. Nowacki, The state of stresses in a thick circular plate due to temperature field, Bull. Acad. Polon. Sci., Ser. Scl. Tech. 5 (1957), 227.
  2. B. A. Boley, J. H. Weiner, Theory of thermal stresses, John Wiley and Sons, Inc., New York, (1960).
  3. K. Grysa and Z. Kozlowski: One-Dimensional Problems of Temperature and Heat Flux Determination at the Surfaces of a Thermoelastic Slab, Part II: The Numerical Analysis, Nucl. Eng. Des., 74 (1982), 15--24. https://doi.org/10.1016/0029-5493(83)90136-X
  4. Y. Ootao, T. Akai, Y. Tanigawa, Three dimentional transient thermal stress analysis of a nonhomogeneous hollow circular cylinder due to a moving heat source in the axial direction, Journal of Thermal Stresses, 18(5) (1995), 497-512. https://doi.org/10.1080/01495739508946317
  5. M. Ishihara, Y. Tanigawa, R. Kawamura, N. Noda, Theoretical analysis of ther moelastoplastic deformation of a circular plate due to a partially distributed heat supply, Journal of Thermal Stresses, 20 (1997), 203-225.
  6. K. S. Parihar and S. S. Patil: Transient heat conduction and analysis of thermal stresses in thin circular plate, Journal of Thermal Stresses, 34(4) (2011), 335-351. https://doi.org/10.1080/01495739.2010.550812
  7. K. R. Gaikwad and K. P. Ghadle, An inverse quasi-static thermal stresses in a thick annular disc, International Journal of Applied Mathematics and Statistics, 19(D10) (2010), 50-62.
  8. K. R. Gaikwad and K. P. Ghadle, Quasi-static thermoelastic problem of an infinitely long circular cylinder, Journal of Korean Society for Industrial and Applied Mathematics, 14(3) (2010), 141--149. https://doi.org/10.12941/jksiam.2010.14.3.141
  9. K. R. Gaikwad and K. P. Ghadle, An Inverse Heat Conduction Problem in a Thick Annular Disc, International Journal of Applied Mathematics and Mechanics, 7(16) (2011), 27-41.
  10. K. R. Gaikwad and K. P. Ghadle, An Inverse Quasi-Static Thermoelastic Problem in a Thick Circular Plate, Southern Journal of Pure and Applied Mathematics, 5 (2011), 13-25.
  11. K. R. Gaikwad and K. P. Ghadle, An Inverse Problem for the Quasi-Static Thermoelastic System in a Thin Clamped Circular Plate, Advances in Applied Mathematical Analysis, 6(1) (2011), 43-54.
  12. K. R. Gaikwad, K. P. Ghadle., On a certain thermoelastic problem of temperature and thermal stresses in a thick circular plate, Australian Journal of Basic and Applied Sciences, 6 (2012), 34-48.
  13. K. R. Gaikwad and K. P. Ghadle, Nonhomogeneous heat conduction problem and its thermal deflection due to internal heat generation in a thin hollow circular disk, Journal of Thermal Stresses, 35(6) (2012), 485-498. http://dx.doi.org/10.1080/01495739.2012.671744
  14. K. R. Gaikwad, Analysis of thermoelastic deformation of a thin hollow circular disk due to partially distributed heat supply, Journal of Thermal Stresses, 36(3) (2013), 207-224. http://dx.doi.org/10.1080/01495739.2013.765168
  15. K. R. Gaikwad, Mathematical modelling and its simulation of a quasi-static thermoelastic problem in a semi-infinite hollow circular disk due to internal heat generation, Journal of Korean Society for Industrial and Applied Mathematics, 19(1) (2015), 69--81. https://doi.org/10.12941/jksiam.2015.19.069
  16. K. R. Gaikwad, Mathematical modelling of thermoelastic problem in a circular sector disk subject to heat generation, Int. J. Adv. Appl. Math. and Mech., 2(3) (2015), 183-195.
  17. K. R. Gaikwad, Two-dimensional steady-state temperature distribution of a thin circular plate due to uniform internal energy generation, Cogent Mathematics, Taylor and Francis Group, 3(1) (2016), 1-10. http://dx.doi.org/10.1080/23311835.2015.1135720
  18. K. R. Gaikwad, Steady-state heat conduction problem in a thick circular plate and its thermal stresses, International Journal of Pure and Applied Mathematics, 115(2) (2017), 301-310. http://dx.doi: 10.12732/ijpam.v115i2.8
  19. K. R. Gaikwad, Axi-symmetric thermoelastic stress analysis of a thin circular plate due to heat generation, International Journal of Dynamical Systems and Differential Equations, 9 (2019), 187-202. https://doi.org/10.1504/IJDSDE.2019.100571
  20. K. R. Gaikwad and S. G. Khavale, Time fractional heat conduction problem in a thin hollow circular disk and it's thermal deflection, Easy Chair, 1672 (2019), 1-12.
  21. S. K. Roy Choudhary, A note on quasi-static thermal deflection of a thin clamped circular plate due to ramp-type heating of a concentric circular region of the upper face, Journal of the Franklin Institute, 296 (1973), 213-219. https://doi.org/10.1016/0016-0032(73)90059-8
  22. N. Noda, R. B. Hetnarski, Y. Tanigawa, Thermal Stresses, Second Edition, Taylor and Francis, New York, 376-387, 2003.
  23. N. M. Ozisik, Boundary Value Problem of Heat Conduction, International Textbook Company, Scranton, Pennsylvania, 84-101, 1968.
  24. Thomas, L., Fundamentals of Heat Transfer, Prentice-Hall, Englewood Cliffs, 1980.

Cited by

  1. GREEN'S FUNCTION APPROACH TO THERMAL DEFLECTION OF A THIN HOLLOW CIRCULAR DISK UNDER AXISYMMETRIC HEAT SOURCE vol.25, pp.1, 2020, https://doi.org/10.12941/jksiam.2021.25.001