References
- W. Nowacki, The state of stresses in a thick circular plate due to temperature field, Bull. Acad. Polon. Sci., Ser. Scl. Tech. 5 (1957), 227.
- B. A. Boley, J. H. Weiner, Theory of thermal stresses, John Wiley and Sons, Inc., New York, (1960).
- K. Grysa and Z. Kozlowski: One-Dimensional Problems of Temperature and Heat Flux Determination at the Surfaces of a Thermoelastic Slab, Part II: The Numerical Analysis, Nucl. Eng. Des., 74 (1982), 15--24. https://doi.org/10.1016/0029-5493(83)90136-X
- Y. Ootao, T. Akai, Y. Tanigawa, Three dimentional transient thermal stress analysis of a nonhomogeneous hollow circular cylinder due to a moving heat source in the axial direction, Journal of Thermal Stresses, 18(5) (1995), 497-512. https://doi.org/10.1080/01495739508946317
- M. Ishihara, Y. Tanigawa, R. Kawamura, N. Noda, Theoretical analysis of ther moelastoplastic deformation of a circular plate due to a partially distributed heat supply, Journal of Thermal Stresses, 20 (1997), 203-225.
- K. S. Parihar and S. S. Patil: Transient heat conduction and analysis of thermal stresses in thin circular plate, Journal of Thermal Stresses, 34(4) (2011), 335-351. https://doi.org/10.1080/01495739.2010.550812
- K. R. Gaikwad and K. P. Ghadle, An inverse quasi-static thermal stresses in a thick annular disc, International Journal of Applied Mathematics and Statistics, 19(D10) (2010), 50-62.
- K. R. Gaikwad and K. P. Ghadle, Quasi-static thermoelastic problem of an infinitely long circular cylinder, Journal of Korean Society for Industrial and Applied Mathematics, 14(3) (2010), 141--149. https://doi.org/10.12941/jksiam.2010.14.3.141
- K. R. Gaikwad and K. P. Ghadle, An Inverse Heat Conduction Problem in a Thick Annular Disc, International Journal of Applied Mathematics and Mechanics, 7(16) (2011), 27-41.
- K. R. Gaikwad and K. P. Ghadle, An Inverse Quasi-Static Thermoelastic Problem in a Thick Circular Plate, Southern Journal of Pure and Applied Mathematics, 5 (2011), 13-25.
- K. R. Gaikwad and K. P. Ghadle, An Inverse Problem for the Quasi-Static Thermoelastic System in a Thin Clamped Circular Plate, Advances in Applied Mathematical Analysis, 6(1) (2011), 43-54.
- K. R. Gaikwad, K. P. Ghadle., On a certain thermoelastic problem of temperature and thermal stresses in a thick circular plate, Australian Journal of Basic and Applied Sciences, 6 (2012), 34-48.
- K. R. Gaikwad and K. P. Ghadle, Nonhomogeneous heat conduction problem and its thermal deflection due to internal heat generation in a thin hollow circular disk, Journal of Thermal Stresses, 35(6) (2012), 485-498. http://dx.doi.org/10.1080/01495739.2012.671744
- K. R. Gaikwad, Analysis of thermoelastic deformation of a thin hollow circular disk due to partially distributed heat supply, Journal of Thermal Stresses, 36(3) (2013), 207-224. http://dx.doi.org/10.1080/01495739.2013.765168
- K. R. Gaikwad, Mathematical modelling and its simulation of a quasi-static thermoelastic problem in a semi-infinite hollow circular disk due to internal heat generation, Journal of Korean Society for Industrial and Applied Mathematics, 19(1) (2015), 69--81. https://doi.org/10.12941/jksiam.2015.19.069
- K. R. Gaikwad, Mathematical modelling of thermoelastic problem in a circular sector disk subject to heat generation, Int. J. Adv. Appl. Math. and Mech., 2(3) (2015), 183-195.
- K. R. Gaikwad, Two-dimensional steady-state temperature distribution of a thin circular plate due to uniform internal energy generation, Cogent Mathematics, Taylor and Francis Group, 3(1) (2016), 1-10. http://dx.doi.org/10.1080/23311835.2015.1135720
- K. R. Gaikwad, Steady-state heat conduction problem in a thick circular plate and its thermal stresses, International Journal of Pure and Applied Mathematics, 115(2) (2017), 301-310. http://dx.doi: 10.12732/ijpam.v115i2.8
- K. R. Gaikwad, Axi-symmetric thermoelastic stress analysis of a thin circular plate due to heat generation, International Journal of Dynamical Systems and Differential Equations, 9 (2019), 187-202. https://doi.org/10.1504/IJDSDE.2019.100571
- K. R. Gaikwad and S. G. Khavale, Time fractional heat conduction problem in a thin hollow circular disk and it's thermal deflection, Easy Chair, 1672 (2019), 1-12.
- S. K. Roy Choudhary, A note on quasi-static thermal deflection of a thin clamped circular plate due to ramp-type heating of a concentric circular region of the upper face, Journal of the Franklin Institute, 296 (1973), 213-219. https://doi.org/10.1016/0016-0032(73)90059-8
- N. Noda, R. B. Hetnarski, Y. Tanigawa, Thermal Stresses, Second Edition, Taylor and Francis, New York, 376-387, 2003.
- N. M. Ozisik, Boundary Value Problem of Heat Conduction, International Textbook Company, Scranton, Pennsylvania, 84-101, 1968.
- Thomas, L., Fundamentals of Heat Transfer, Prentice-Hall, Englewood Cliffs, 1980.
Cited by
- GREEN'S FUNCTION APPROACH TO THERMAL DEFLECTION OF A THIN HOLLOW CIRCULAR DISK UNDER AXISYMMETRIC HEAT SOURCE vol.25, pp.1, 2020, https://doi.org/10.12941/jksiam.2021.25.001