DOI QR코드

DOI QR Code

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

  • OGUNFEYITIMI, S.E. (ADVANCED RESEARCH LABORATORY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BENIN) ;
  • IKHILE, M.N.O. (ADVANCED RESEARCH LABORATORY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BENIN)
  • 투고 : 2020.06.27
  • 심사 : 2020.08.25
  • 발행 : 2020.09.25

초록

In this paper, multi-block generalized backward differentiation methods for numerical solutions of ordinary differential and differential algebraic equations are introduced. This class of linear multi-block methods is implemented as multi-block boundary value methods (MB2 VMs). The root distribution of the stability polynomial of the new class of methods are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of their correct implementation. Numerical tests, showing the potential of such methods for output of multi-block of solutions of the ordinary differential equations in the new approach are also reported herein. The methods which output multi-block of solutions of the ordinary differential equations on application, are unlike the conventional linear multistep methods which output a solution at a point or the conventional boundary value methods and multi-block methods which output only a block of solutions per step. The MB2 VMs introduced herein is a novel approach at developing very large scale integration methods (VLSIM) in the numerical solution of differential equations.

키워드

참고문헌

  1. E. Hairer and G. Wanner, Numerical methods for initial value problems in ordinary differential equations II, Springer, Berlin, 1996.
  2. K. Brenan, S. Campbell and L. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, North-Holland, New York, 1989.
  3. G. Dahlquist, A special stability problem for linear multistep methods, BIT. 3 (1963), 27-43. https://doi.org/10.1007/BF01963532
  4. M. Ihkile and R. Okuonghae,(2007) Stiffly stable continuous extension of second derivative LMM with an off-step points IVPs in ODEs, J Nig Assoc Math Phy 11, (2007), 175-190.
  5. S. Ogunfeyitimi and M. Ikhile, Implicit-Explicit Methods Based on Recursively Derived Second Derivative LMM. J. Nigerian Association of Mathematical Physics. 38, (2016), 57-66.
  6. R. Okuonghae , M. Ikhile , L($\alpha$)-stable variable-order implicit second derivative Runge-Kutta methods. J. Numer. Analysis and Applications 7, (2014), 314-327. https://doi.org/10.1134/S1995423914040065
  7. S. Fatunla, Block methods for second order ODEs, Int J. Comput. Mat. 14, (1990), 55-56.
  8. L. Shampine and H. Watt, Block implicit one-step methods, Mat. Comput. 23, (1969), 731-740. https://doi.org/10.1090/S0025-5718-1969-0264854-5
  9. B. Sommeijer, W. Couzy and P. Houwen, A-stable parallel block methods, report NM-R8919. Centeer for Math. and Comp. Sci., Amsterdam, 1989.
  10. P. Chartier, L-sstable parallel one-block methods for ordinary differential equations, Technical report 1650 INRIA. (1993),
  11. M. Chu and H. Hamilton, Parallel solution of ODEs by multi-block methods, SIAM J. Sci. Stat. Comput, 8 (1987), 342-535. https://doi.org/10.1137/0908039
  12. O. Ibrahim and M. Ikhile, Generalized family of symmetric multistep methods with minimial phase-lag for initial value problems in ordinary differential equations Mediterranean J. Math. 17 (2020), 1-30. Doi.org/10.1007/s00009-020-01507-5
  13. P. Olatunji and M. Ikhile, Strongly regular general linear methods J. Sci. Comp. 82,(2020), 1-30. Doi.org/10.1007/s10915-019-01107-w
  14. J. Lambert, Numerical methods for ordinary differential equations, Wiley, New York, 1991.
  15. S. Fatunla, Numerical methods for initial value problems in ordinary differential equations, Academic Press Inc, London, 1989.
  16. P. Amodio, W.Golik and F. Mazzia , Variable-step boundary value methods based on reverse Adams schemes and their grid distribution, Appl. Numer. Math. 18 (1995), 5-21. https://doi.org/10.1016/0168-9274(95)00044-U
  17. A. Axelsson and J. Verwer, Boundary value techniques for initial value problems in ordinary differential equations, Math. Comput. 45 (1985), 153-171. https://doi.org/10.1090/S0025-5718-1985-0790649-9
  18. L. Brugnano and D. Trigiante, Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66 (1996), 97-109. https://doi.org/10.1016/0377-0427(95)00166-2
  19. L. Brugnano and D. Trigiante, Solving differential problems by multistep initial and boundary value methods, Gordon and Breach Science Publishers, Amsterdam 1998.
  20. L. Aceto and D. Trigante, On the A-stable method in the GBDF class, Nonlinear Analysis Real World appl. 3 (2002), 9-23. https://doi.org/10.1016/S1468-1218(01)00009-8
  21. S. Ogunfeyitimi and M. Ikhile, Generalized second derivative linear multistep methods based on the methods of Enright. Int. J. Appl. and Comput. Math 6, 76 (2020)https://doi.org/10.1007/s40819-020-00827-0
  22. W.H. Enright, it Second derivative multistep methods for stiff ordinary differential equations, SIAM J. Numer. Anal. 11 (1974), 321-331. https://doi.org/10.1137/0711029
  23. S. Ogunfeyitimi and M. Ikhile, Second derivative generalized extended backward differentiation formulas for stiff problems. J Korean Soc Ind Appl Math 23,(2019), 179-202. Doi.org/10.129441/jksiam.2019.23.179
  24. P. Amodio and F. Mazzia, Boundary value methods for the solution of differential-algebraic equations, Appl. Numer. Math. 66 (1994), 411-421.
  25. F. Mazzia, Boundary Value Methods for the numerical solution of boundary value problems in differential algebraic equations, Bollettino dellUnione Matematica Italiana 7 (1997), 579-593.
  26. L. Brugnano and D. Trigiante, Block boundary value methods for linear hamiltonian systems, Appl. Math. Comput. 81 (1997), 49-68. https://doi.org/10.1016/0096-3003(95)00308-8
  27. L. Brugnano and D. Trigiante, High order multistep methods for boundary value problems. Appl. Numer. Math. 18 (1985), 79-94. https://doi.org/10.1016/0168-9274(95)00045-V
  28. L. Brugnano and D. Trigiante, Block implicit methods for ODEs, in: D Trigiante (Ed.), Recent Trends in Numerical Analysis, Nova Science, New York (2000), 81-105.
  29. J. Zhang and H. Chen, Asymptotic stability of block boundary value methods for delay differential-algebraic equations, Math. Comput. Simulation 81 (2010), 100-108. https://doi.org/10.1016/j.matcom.2010.07.012
  30. J. Zhang and H. Chen, Block boundary value methods for delay differential equations, Appl. Numer. Math. 60 (2010), 915-923. https://doi.org/10.1016/j.apnum.2010.05.001
  31. L. Brugnano, F. Lavernaro and T. Susca, Hamiltonian BVMs (HBVMs): implementation details and applications, AIP. Conf. Proc. 1168 (2009), 723-726.
  32. L. Brugnano, F. Lavernaro and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math. 5 (2010), 17–37.
  33. F. Mazzia and A. Nagy, Solving Volterra integro-differential equations by variable stepsize block BS methods: properties and implementation techniques, Appl. Math. Comput. 239 (2014) 198–210. https://doi.org/10.1016/j.amc.2014.04.030
  34. J. Zhang and H. Chen, Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations, Appl. Numer. Math. 62 (2012), 141–154. https://doi.org/10.1016/j.apnum.2011.11.001
  35. Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation, J. Differ. Eqn. Appl. 119 (2013), 1127–1242.
  36. Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation with many delays, App. Mat. Model 38 (2014), 325–335. https://doi.org/10.1016/j.apm.2013.06.013
  37. F. Iavernaro and F. Mazzia, Block-boundary value methods for the solution of ordinary differential equations, SIAM. J. Sci. Comput. 21 (1999), 323–339. https://doi.org/10.1137/S1064827597325785
  38. A. Iserles and S. Norsett, On the theory of parallel Runge-Kutta methods. IMA J. Numer. Analysis, 10, (1990), 463-488. https://doi.org/10.1093/imanum/10.4.463.
  39. M. Ikhile and K. Muka, A digraph theoretic parallelism in block methods, Afr. Mat. 26 (2015), 1651-1667 https://doi.org/10.1007/s13370-014-0307-2
  40. E. Ugalde, Computation of invariant pairs and matrix solvents Doctoral dissertation, Universit deLimoges. 2015
  41. M. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press Inc., New York, 2004.
  42. F. Iavernaro, F. Mazzia and D. Trigiante, Eigenvalues and quasi-eigenvalues of branded Toeplitz matrices: some properties and application, Numer. algorithm 31 (2002), 157–170. https://doi.org/10.1023/A:1021197900145
  43. R. Beam and R. Warming, The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci. Comput. 14 (1993), 971–1006. https://doi.org/10.1137/0914059
  44. A. Bottcher and M. Halwass, A Newton method for canonical Wiener-hopf and spectral factorization of matrix polynomial Linear Algebra App. Vol. 26 (2003), 873–897.
  45. A. Bottcher and M. Halwass, Wiener-Hopf and spectral factorization of real polynomials by Newton's method. Linear Algebra Appl. 438 (2013), 4760–4805. https://doi.org/10.1016/j.laa.2013.02.020
  46. E. Hairer and G. Wanner, Exploiting hidden structure in matrix computations, Algorithms and Applications, Springer, Cetraro,Italy, 2015.
  47. L. Brugnano and C. Magherini, Blended implementation of block implicit methods for ODEs, Appl. Numer. Math. 42 (2002), 29–45. https://doi.org/10.1016/S0168-9274(01)00140-4
  48. G. Nwachukwu and T. Okor, Second derivative generalised backward differentiation formulae for solving stiff problems, LAENG. Int. J. Appl. Math. 48 (2018), 1–15.
  49. D.J. Higham, N.J. Higham, MATLAB guide. 2nd ed. SIAM, Philadelphia, 2005.
  50. J.Borwein and M. Skerritt, An Introduction to Modern Mathematical Com-puting with Mathematica, Springer, Berlin 2012
  51. Wolfram Research, Inc. Mathematica, Version 11.1
  52. J. Sanders and E. Kandrot, CUDA by Example: an Introduction to General-Purpose GPU Programming, Addison-Wesley Professional, Michigan 2010
  53. L. Chopp, Introduction to High Performance Scientific Computing (1st. ed.), SIAM, Philadelphia, PA, USA. 2019