참고문헌
- E. Hairer and G. Wanner, Numerical methods for initial value problems in ordinary differential equations II, Springer, Berlin, 1996.
- K. Brenan, S. Campbell and L. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, North-Holland, New York, 1989.
- G. Dahlquist, A special stability problem for linear multistep methods, BIT. 3 (1963), 27-43. https://doi.org/10.1007/BF01963532
- M. Ihkile and R. Okuonghae,(2007) Stiffly stable continuous extension of second derivative LMM with an off-step points IVPs in ODEs, J Nig Assoc Math Phy 11, (2007), 175-190.
- S. Ogunfeyitimi and M. Ikhile, Implicit-Explicit Methods Based on Recursively Derived Second Derivative LMM. J. Nigerian Association of Mathematical Physics. 38, (2016), 57-66.
-
R. Okuonghae , M. Ikhile , L(
$\alpha$ )-stable variable-order implicit second derivative Runge-Kutta methods. J. Numer. Analysis and Applications 7, (2014), 314-327. https://doi.org/10.1134/S1995423914040065 - S. Fatunla, Block methods for second order ODEs, Int J. Comput. Mat. 14, (1990), 55-56.
- L. Shampine and H. Watt, Block implicit one-step methods, Mat. Comput. 23, (1969), 731-740. https://doi.org/10.1090/S0025-5718-1969-0264854-5
- B. Sommeijer, W. Couzy and P. Houwen, A-stable parallel block methods, report NM-R8919. Centeer for Math. and Comp. Sci., Amsterdam, 1989.
- P. Chartier, L-sstable parallel one-block methods for ordinary differential equations, Technical report 1650 INRIA. (1993),
- M. Chu and H. Hamilton, Parallel solution of ODEs by multi-block methods, SIAM J. Sci. Stat. Comput, 8 (1987), 342-535. https://doi.org/10.1137/0908039
- O. Ibrahim and M. Ikhile, Generalized family of symmetric multistep methods with minimial phase-lag for initial value problems in ordinary differential equations Mediterranean J. Math. 17 (2020), 1-30. Doi.org/10.1007/s00009-020-01507-5
- P. Olatunji and M. Ikhile, Strongly regular general linear methods J. Sci. Comp. 82,(2020), 1-30. Doi.org/10.1007/s10915-019-01107-w
- J. Lambert, Numerical methods for ordinary differential equations, Wiley, New York, 1991.
- S. Fatunla, Numerical methods for initial value problems in ordinary differential equations, Academic Press Inc, London, 1989.
- P. Amodio, W.Golik and F. Mazzia , Variable-step boundary value methods based on reverse Adams schemes and their grid distribution, Appl. Numer. Math. 18 (1995), 5-21. https://doi.org/10.1016/0168-9274(95)00044-U
- A. Axelsson and J. Verwer, Boundary value techniques for initial value problems in ordinary differential equations, Math. Comput. 45 (1985), 153-171. https://doi.org/10.1090/S0025-5718-1985-0790649-9
- L. Brugnano and D. Trigiante, Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66 (1996), 97-109. https://doi.org/10.1016/0377-0427(95)00166-2
- L. Brugnano and D. Trigiante, Solving differential problems by multistep initial and boundary value methods, Gordon and Breach Science Publishers, Amsterdam 1998.
- L. Aceto and D. Trigante, On the A-stable method in the GBDF class, Nonlinear Analysis Real World appl. 3 (2002), 9-23. https://doi.org/10.1016/S1468-1218(01)00009-8
- S. Ogunfeyitimi and M. Ikhile, Generalized second derivative linear multistep methods based on the methods of Enright. Int. J. Appl. and Comput. Math 6, 76 (2020)https://doi.org/10.1007/s40819-020-00827-0
- W.H. Enright, it Second derivative multistep methods for stiff ordinary differential equations, SIAM J. Numer. Anal. 11 (1974), 321-331. https://doi.org/10.1137/0711029
- S. Ogunfeyitimi and M. Ikhile, Second derivative generalized extended backward differentiation formulas for stiff problems. J Korean Soc Ind Appl Math 23,(2019), 179-202. Doi.org/10.129441/jksiam.2019.23.179
- P. Amodio and F. Mazzia, Boundary value methods for the solution of differential-algebraic equations, Appl. Numer. Math. 66 (1994), 411-421.
- F. Mazzia, Boundary Value Methods for the numerical solution of boundary value problems in differential algebraic equations, Bollettino dellUnione Matematica Italiana 7 (1997), 579-593.
- L. Brugnano and D. Trigiante, Block boundary value methods for linear hamiltonian systems, Appl. Math. Comput. 81 (1997), 49-68. https://doi.org/10.1016/0096-3003(95)00308-8
- L. Brugnano and D. Trigiante, High order multistep methods for boundary value problems. Appl. Numer. Math. 18 (1985), 79-94. https://doi.org/10.1016/0168-9274(95)00045-V
- L. Brugnano and D. Trigiante, Block implicit methods for ODEs, in: D Trigiante (Ed.), Recent Trends in Numerical Analysis, Nova Science, New York (2000), 81-105.
- J. Zhang and H. Chen, Asymptotic stability of block boundary value methods for delay differential-algebraic equations, Math. Comput. Simulation 81 (2010), 100-108. https://doi.org/10.1016/j.matcom.2010.07.012
- J. Zhang and H. Chen, Block boundary value methods for delay differential equations, Appl. Numer. Math. 60 (2010), 915-923. https://doi.org/10.1016/j.apnum.2010.05.001
- L. Brugnano, F. Lavernaro and T. Susca, Hamiltonian BVMs (HBVMs): implementation details and applications, AIP. Conf. Proc. 1168 (2009), 723-726.
- L. Brugnano, F. Lavernaro and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math. 5 (2010), 17–37.
- F. Mazzia and A. Nagy, Solving Volterra integro-differential equations by variable stepsize block BS methods: properties and implementation techniques, Appl. Math. Comput. 239 (2014) 198–210. https://doi.org/10.1016/j.amc.2014.04.030
- J. Zhang and H. Chen, Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations, Appl. Numer. Math. 62 (2012), 141–154. https://doi.org/10.1016/j.apnum.2011.11.001
- Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation, J. Differ. Eqn. Appl. 119 (2013), 1127–1242.
- Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation with many delays, App. Mat. Model 38 (2014), 325–335. https://doi.org/10.1016/j.apm.2013.06.013
- F. Iavernaro and F. Mazzia, Block-boundary value methods for the solution of ordinary differential equations, SIAM. J. Sci. Comput. 21 (1999), 323–339. https://doi.org/10.1137/S1064827597325785
- A. Iserles and S. Norsett, On the theory of parallel Runge-Kutta methods. IMA J. Numer. Analysis, 10, (1990), 463-488. https://doi.org/10.1093/imanum/10.4.463.
- M. Ikhile and K. Muka, A digraph theoretic parallelism in block methods, Afr. Mat. 26 (2015), 1651-1667 https://doi.org/10.1007/s13370-014-0307-2
- E. Ugalde, Computation of invariant pairs and matrix solvents Doctoral dissertation, Universit deLimoges. 2015
- M. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press Inc., New York, 2004.
- F. Iavernaro, F. Mazzia and D. Trigiante, Eigenvalues and quasi-eigenvalues of branded Toeplitz matrices: some properties and application, Numer. algorithm 31 (2002), 157–170. https://doi.org/10.1023/A:1021197900145
- R. Beam and R. Warming, The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci. Comput. 14 (1993), 971–1006. https://doi.org/10.1137/0914059
- A. Bottcher and M. Halwass, A Newton method for canonical Wiener-hopf and spectral factorization of matrix polynomial Linear Algebra App. Vol. 26 (2003), 873–897.
- A. Bottcher and M. Halwass, Wiener-Hopf and spectral factorization of real polynomials by Newton's method. Linear Algebra Appl. 438 (2013), 4760–4805. https://doi.org/10.1016/j.laa.2013.02.020
- E. Hairer and G. Wanner, Exploiting hidden structure in matrix computations, Algorithms and Applications, Springer, Cetraro,Italy, 2015.
- L. Brugnano and C. Magherini, Blended implementation of block implicit methods for ODEs, Appl. Numer. Math. 42 (2002), 29–45. https://doi.org/10.1016/S0168-9274(01)00140-4
- G. Nwachukwu and T. Okor, Second derivative generalised backward differentiation formulae for solving stiff problems, LAENG. Int. J. Appl. Math. 48 (2018), 1–15.
- D.J. Higham, N.J. Higham, MATLAB guide. 2nd ed. SIAM, Philadelphia, 2005.
- J.Borwein and M. Skerritt, An Introduction to Modern Mathematical Com-puting with Mathematica, Springer, Berlin 2012
- Wolfram Research, Inc. Mathematica, Version 11.1
- J. Sanders and E. Kandrot, CUDA by Example: an Introduction to General-Purpose GPU Programming, Addison-Wesley Professional, Michigan 2010
- L. Chopp, Introduction to High Performance Scientific Computing (1st. ed.), SIAM, Philadelphia, PA, USA. 2019