DOI QR코드

DOI QR Code

Transfer of Xenomitochondria Containing the Entire Mouse Mitochondrial Genome into a Genetically Modified Yeast Expressing Mitochondrial Transcription Factor A

  • Received : 2020.04.16
  • Accepted : 2020.07.03
  • Published : 2020.09.28

Abstract

Recently, it was reported that entire mammalian mtDNA genomes could be transplanted into the mitochondrial networks of yeast, where they were accurately and stably maintained without rearrangement as intact genomes. Here, it was found that engineered mtDNA genomes could be readily transferred to and steadily maintained in the mitochondria of genetically modified yeast expressing the mouse mitochondrial transcription factor A (Tfam), one of the mitochondrial nucleoid proteins. The transferred mtDNA genomes were stably retained in the Tfam-expressing yeast cells for many generations. These results indicated that the engineered mouse mtDNA genomes introduced in yeast mitochondria could be relocated into the mitochondria of other cells and that the transferred genomes could be maintained within a mitochondrial environment that is highly amenable to mimicry of the biological conditions in mammalian mitochondria.

Keywords

References

  1. Yoon YG, Koob MD, Yoo YH. 2010. Re-engineering the mitochondrial genomes in mammalian cells. Anat. Cell Biol. 43: 97-109. https://doi.org/10.5115/acb.2010.43.2.97
  2. Esterhuizen K, van der Westhuizen FH, Louw R. 2017. Metabolomics of mitochondrial disease. Mitochondrion 35: 97-110. https://doi.org/10.1016/j.mito.2017.05.012
  3. Nguyen NNY, Kim SS, Jo YH. 2020. Deregulated mitochondrial DNA in diseases. DNA Cell Biol. 39: 1385-1400. https://doi.org/10.1089/dna.2019.5220
  4. Klucnika A, Ma H. 2020. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos. Trans. R. Soc. Lond. B Biol. Sci. 375: 20190187.
  5. Yoon YG, Koob MD. 2019. Intramitochondrial transfer and engineering of mammalian mitochondrial genomes in yeast. Mitochondrion 46: 15-21. https://doi.org/10.1016/j.mito.2019.03.006
  6. Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, et al. 1998. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18: 231-236. https://doi.org/10.1038/ng0398-231
  7. Miyakawa I. 2017. Organization and dynamics of yeast mitochondrial nucleoids. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 93: 339-359. https://doi.org/10.2183/pjab.93.021
  8. Bonnefoy N, Fox TD. 2002. Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Enzymol. 350: 97-111. https://doi.org/10.1016/S0076-6879(02)50958-7
  9. Wakem LP, Sherman F. 1990. Chromosomal assignment of mutations by specific chromosome loss in the yeast Saccharomyces cerevisiae. Genetics 125: 333-340. https://doi.org/10.1093/genetics/125.2.333
  10. Yoon YG, Koob MD, Yoo YH. 2011. Mitochondrial genome-maintaining activity of mouse mitochondrial transcription factor A and its transcript isoform in Saccharomyces cerevisiae. Gene 484: 52-60. https://doi.org/10.1016/j.gene.2011.05.032
  11. Yoon YG, Koob MD. 2003. Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria. Nucleic Acids Res. 31: 1407-1415. https://doi.org/10.1093/nar/gkg228
  12. Yoon YG, Haug CL, Koob MD. 2007. Interspecies mitochondrial fusion between mouse and human mitochondria is rapid and efficient. Mitochondrion 7: 223-229. https://doi.org/10.1016/j.mito.2006.11.022
  13. Kucsera J, Pfeiffer I, Ferenczy L. 1998. A novel method for hybridization of Saccharomyces species without genetic markers. Can. J. Microbiol. 44: 959-964. https://doi.org/10.1139/w98-093
  14. Boeke JD, Trueheart J, Natsoulis G, Fink GR. 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154: 164-175. https://doi.org/10.1016/0076-6879(87)54076-9
  15. Chen XJ, Butow RA. 2005. The organization and inheritance of the mitochondrial genome. Nat. Rev. Genet. 6: 815-825. https://doi.org/10.1038/nrg1708
  16. Zelenaya-Troitskaya O, Newman SM, Okamoto K, Perlman PS, Butow RA. 1998. Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 148: 1763-1776. https://doi.org/10.1093/genetics/148.4.1763
  17. Conde J, Fink GR. 1976. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73: 3651-3655. https://doi.org/10.1073/pnas.73.10.3651
  18. Kim G, Sikder H, Singh KK. 2002. A colony color method identifies the vulnerability of mitochondria to oxidative damage. Mutagenesis 17: 375-381. https://doi.org/10.1093/mutage/17.5.375
  19. Parisi MA, Xu B, Clayton DA. 1993. A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol. Cell. Biol. 13: 1951-1961. https://doi.org/10.1128/MCB.13.3.1951
  20. Kanki T, Nakayama H, Sasaki N, Takio K, Alam TI, Hamasaki N, et al. 2004. Mitochondrial nucleoid and transcription factor A. Ann. NY Acad. Sci. 1011: 61-68. https://doi.org/10.1196/annals.1293.007
  21. Campbell CT, Kolesar JE, Kaufman BA. 2012. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta 1819: 921-929. https://doi.org/10.1016/j.bbagrm.2012.03.002
  22. Ramachandran A, Basu U, Sultana S, Nandakumar D, Patel SS. 2017. Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation. Nucleic Acids Res. 45: 861-874. https://doi.org/10.1093/nar/gkw1157
  23. King GA, Hashemi Shabestari M, Taris KH, Pandey AK, Venkatesh S, Thilagavathi J, et al. 2018. Acetylation and phosphorylation of human TFAM regulate TFAM-DNA interactions via contrasting mechanisms. Nucleic Acids Res. 46: 3633-3642. https://doi.org/10.1093/nar/gky204