참고문헌
- Hultmark D, Steiner H, Rasmuson T, Boman H G. 1980. Insect immunity. purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106: 7-16. https://doi.org/10.1111/j.1432-1033.1980.tb05991.x
- Steiner H, Hultmark D, Engstrom A, Bennich H, Boman H G. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248. https://doi.org/10.1038/292246a0
- Bulet P, Stocklin R. 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12: 3-11. https://doi.org/10.2174/0929866053406011
- Ganz T, Lehrer R I. 1994. Defensins. Curr. Opin. Immunol. 6: 584-589. https://doi.org/10.1016/0952-7915(94)90145-7
- Otvos L Jr. 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6: 497-511. https://doi.org/10.1002/1099-1387(200010)6:10<497::AID-PSC277>3.0.CO;2-W
- Lee JH, Kim IW, Kim SH, Yun EY, Nam SH, Ahn MY, et al. 2015. Anticancer activity of CopA3 dimer peptide in human gastric cancer cells. BMB Rep. 48: 324-329. https://doi.org/10.5483/BMBRep.2015.48.6.073
- Lee JH, Kim IW, Shin YP, Park HJ, Lee YS, Lee IH, et al. 2016. Enantiomeric CopA3 dimer peptide suppresses cell viability and tumor xenograft growth of human gastric cancer cells. Tumor Biol. 37: 3237-3245. https://doi.org/10.1007/s13277-015-4162-z
- Lee JH, Kim IW, Kim SH, Kim MA, Yun EY, Nam SH, et al. 2015. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 25: 1275-1280. https://doi.org/10.4014/jmb.1503.03091
- Kim IW, Lee JH, Subramaniyam S, Yun EY, Kim I, Park J, et al. 2016. De novo transcriptome analysis and detection of antimicrobial peptides of the american cockroach Periplaneta americana (Linnaeus). PLoS One. 11: e0155304. https://doi.org/10.1371/journal.pone.0155304
- Chen W, Liu YX, Jiang GF. 2015. De novo assembly and characterization of the testis transcriptome and development of EST-SSR markers in the cockroach Periplaneta americana. Sci. Rep. 5: 11144. https://doi.org/10.1038/srep11144
- Ali SM, Siddiqui R, Ong SK, Shah MR, Anwar A, Heard PJ, et al. 2017. Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana). Appl. Microbiol. Biotechnol. 101: 253-286. https://doi.org/10.1007/s00253-016-7872-2
- Hong J, Zhang P, Yoon IN, Hwang JS, Kang JK, Kim H. 2017. The American cockroach peptide periplanetasin-2 blocks Clostridium difficile toxin A-induced cell damage and inflammation in the gut. J. Microbiol. Biotechnol. 27: 694-700. https://doi.org/10.4014/jmb.1612.12012
- Hawiger J. 2001. Innate immunity and inflammation: A transcriptional paradigm. Immunol. Res. 23: 99-109. https://doi.org/10.1385/IR:23:2-3:099
- Hanada T, Yoshimura A. 2002. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 13: 413-421. https://doi.org/10.1016/S1359-6101(02)00026-6
- Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. 1754: 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
- Uwe S. 2008. Anti-inflammatory interventions of NF-kB signaling potential applications and risks. Biochem. Pharmacol. 75: 1567-1579. https://doi.org/10.1016/j.bcp.2007.10.027
- Kim MJ, Jeong SM, Kang BK, Kim KB, Ahn DH. 2019. Anti-inflammatory effects of grasshopper ketone from Sargassum fulvellum ethanol extract on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. J. Microbiol. Biotechnol. 29: 820-826. https://doi.org/10.4014/jmb.1901.01027
- Forstermann U, Sessa WC. 2012. Nitric oxide synthases: regulation and function. Eur. Heart J. 33: 829-837. https://doi.org/10.1093/eurheartj/ehr304
- Pacher P, Beckman JS, Liaudet L. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 1: 315-424. https://doi.org/10.1152/physrev.00029.2006
- Botting RM. 2006. Inhibitors of cyclooxygenases: mechanisms, selectivity and uses. J. Physiol. Pharmacol. 5: S113-S124.
- Ricciotti E, Fitzgerald GA. 2011. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31: 986-1000. https://doi.org/10.1161/ATVBAHA.110.207449
- Yang X, Kang MC, Li Y, Kim EA, Kang SM, Jeon YJ. 2014. Anti-inflammatory activity of Questinol isolated from marine-derived fungus Eurotium amstelodami in lipopolysaccharide-stimulated Raw264.7 macrophages. J. Microbiol. Biotechnol. 24: 1346-1353. https://doi.org/10.4014/jmb.1405.05035
-
Hu TY, Ju JM, Mo LH, Ma L, Hu WH, You RR, et al. 2019. Anti-inflammation action of xanthones from Swertia chirayita by regulating COX-2/
$NF-{\kappa}B$ /MAPKs/Akt signaling pathways in RAW 264.7 macrophage cells. Phytomedicine 55: 214-221. https://doi.org/10.1016/j.phymed.2018.08.001 -
Chen X, Miao J, Wang H, Zhao F, Hu J, Gao P, et al. 2015. The anti-inflammatory activities of Ainsliaea fragrans Champ. extract and its components in lipopolysaccharide stimulated RAW264.7 macrophages through inhibition of
$NF-{\kappa}B$ pathway. J. Ethnopharmacol. 170: 72-80. https://doi.org/10.1016/j.jep.2015.05.004 - Karin M. 1995. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270: 16483-16486. https://doi.org/10.1074/jbc.270.28.16483
- Zhong J, Kyriakis JM. 2007. Dissection of a signaling pathway by which pathogen-associated molecular patterns recruit the JNK and p38 MAPKs and trigger cytokine release. J. Biol. Chem. 282: 24246-24254. https://doi.org/10.1074/jbc.M703422200
-
Liu T, Zhang L, Joo D, Sun SC. 2017.
$NF-{\kappa}B$ signaling in inflammation. Signal Transduct. Target. Ther. 2: 17023. https://doi.org/10.1038/sigtrans.2017.23 -
Tergaonkar V, Bottero V, Ikawa V, Li Q, Verma IM. 2003. IkB kinase-independent
$IkB{\alpha}$ degradation pathway: Functional$NF-{\kappa}B$ activity and implications for cancer therapy. Mol. Cell. Biol. 23: 8070-8083. https://doi.org/10.1128/MCB.23.22.8070-8083.2003 - Ahmad B, Hanif Q, Xubiao W, Lulu Z, Shahid M, Dayong S, et al. 2019. Expression and purification of hybrid LL-37Ta1 peptide in Pichia pastoris and evaluation of its immunomodulatory and anti-inflammatory activities by LPS neutralization. Front. Immunol. 10: 1365. https://doi.org/10.3389/fimmu.2019.01365
- Mu L, Zhou L, Yang J, Zhuang L, Tang J, Liu T, et al. 2017. The first identified cathelicidin from tree frogs possesses anti-inflammatory and partial LPS neutralization activities. Amino Acids. 49: 1571-1585. https://doi.org/10.1007/s00726-017-2449-7
- Walters SM, Dubey VS, Jeffrey NR, Dixon DR. 2010. Antibiotic-induced Porphyromonas gingivalis LPS release and inhibition of LPS-stimulated cytokines by antimicrobial peptides. Peptides 31: 1649-1653. https://doi.org/10.1016/j.peptides.2010.06.001
- Schadich E, Mason D, Cole AL. 2013. Neutralization of bacterial endotoxins by frog antimicrobial peptides. Microbiol. Immunol. 57: 159-161. https://doi.org/10.1111/1348-0421.12012
- Sun Y, Shang D. 2015. Inhibitory effects of antimicrobial peptides on lipopolysaccharide-induced inflammation. Mediators Inflamm. 2015: 167572.
- Nan YH, Jeon YJ, Park IS, Shin SY. 2008. Antimicrobial peptide P18 inhibits inflammatory responses by LPS- but not by IFN-c-stimulated macrophages. Biotechnol. Lett. 30: 1183-1187. https://doi.org/10.1007/s10529-008-9682-9
- Lee JH, Seo M, Lee HJ, Baek M, Kim IW, Kim SY, et al. 2019. Anti-inflammatory activity of antimicrobial peptide allomyrinasin derived from the dynastid beetle, Allomyrina dichotoma. J. Microbiol. Biotechnol. 29: 687-695. https://doi.org/10.4014/jmb.1809.09031
피인용 문헌
- BV-2 미세아교세포에서 왕귀뚜라미 유래 Teleogryllusine의 신경염증 억제 효과 vol.30, pp.11, 2020, https://doi.org/10.5352/jls.2020.30.11.999
- The Effects of Luminescent CdSe Quantum Dot-Functionalized Antimicrobial Peptides Nanoparticles on Antibacterial Activity and Molecular Mechanism vol.16, 2021, https://doi.org/10.2147/ijn.s295928
- Periplaneta americana Oligosaccharides Exert Anti-Inflammatory Activity through Immunoregulation and Modulation of Gut Microbiota in Acute Colitis Mice Model vol.26, pp.6, 2020, https://doi.org/10.3390/molecules26061718
- Bioinformatic analysis and antiviral effect of Periplaneta americana defensins vol.308, 2020, https://doi.org/10.1016/j.virusres.2021.198627