References
- O'Neill J. 2014. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review of antimicrobial resistance. Available from https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf. Accessed Nov. 20, 2019.
- Centers for Disease Control and Prevention. 2013. Antibiotic resistance threats in the United States, 2013. Available from https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed Nov. 17, 2019.
- Kim JO, Song SA, Yoon EJ, Shin JH, Lee H, Jeong SH, et al. 2017. Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncX3-type plasmid harboring a truncated Tn4401a. Diagn. Microbiol. Infect. Dis. 87: 343-348. https://doi.org/10.1016/j.diagmicrobio.2016.12.012
- Jeong SH, Kim HS, Kim JS, Shin DH, Kim HS, Park MJ, et al. 2016. Prevalence and molecular characteristics of carbapenemaseproducing Enterobacteriaceae from five hospitals in Korea. Ann. Lab. Med. 36: 529-535. https://doi.org/10.3343/alm.2016.36.6.529
-
Mouloudi E, Protonotariou E, Zagorianou A, Iosifidis E, Karapanagiotou A, Giasnetsova T, et al. 2010. Bloodstream infections caused by metallo-
${\beta}$ -lactamase/Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: Risk factors for infection and impact of type of resistance on outcomes. Infect. Control Hosp. Epidemiol. 31: 1250-1256. https://doi.org/10.1086/657135 -
Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K. 1997. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC
${\beta}$ -lactamase, and the foss of an outer membrane protein. Antimicrob. Agents Chemother. 41: 563-569. https://doi.org/10.1128/AAC.41.3.563 -
Kaczmarek FM, Dib-Hajj F, Shang W, Gootz TD. 2006. High-level carbapenem resistance in a Klebsiella pneumoniae clinical isolate is due to the combination of
$bla_{ACT-1}$ ${\beta}$ -lactamase production, porin OmpK35/36 insertional inactivation, and down-regulation of the phosphate transport porin PhoE. Antimicrob. Agents Chemother. 50: 3396-3406. https://doi.org/10.1128/AAC.00285-06 - Nordmann P, Dortet L, Poirel L. 2012. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol. Med. 18: 263-272 https://doi.org/10.1016/j.molmed.2012.03.003
- Giani T, Pini B, Arena F, Conte V, Bracco S, Migliavacca R, et al. 2013. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: Results of the first countrywide survey, 15 May to 30 June 2011. Euro. Surveill. 18: 20489.
- Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol. 7: 895.
- Chen YT, Lin JC, Fung CP, Lu PL, Chuang YC, Wu TL, et al. 2014. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J. Antimicrob. Chemother. 69: 628-631. https://doi.org/10.1093/jac/dkt409
- Frost L, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: The agents of open source evolution. Nat. Rev. Microbiol. 3: 722-732. https://doi.org/10.1038/nrmicro1235
- Sota M, Top E. 2008. Horizontal gene transfer mediated by plasmids, pp. 111-181. In Lipps G (ed.), Plasmids: Current Research and Future Trends. Caister Academic Press, Horizon Scientific Press, Norfolk, VA.
- Frost LS, Koraimann G. 2010. Regulation of bacterial conjugation: Balancing opportunity with adversity. Future Microbiol. 5: 1057-1071. https://doi.org/10.2217/fmb.10.70
- Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EP, de la Cruz F. 2010. Mobility of plasmids. Microbiol. Mol. Biol. Rev. 74: 434-452. https://doi.org/10.1128/MMBR.00020-10
- Guglielmini J, Quintais L, Garcillan-Barcia MP, de la Cruz F, Rocha EP. 2011. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7: e1002222. https://doi.org/10.1371/journal.pgen.1002222
-
Naas T, Cuzon G, Truong HV, Nordmann P. 2012. Role of ISKpn7 and deletions in
$bla_{KPC}$ gene expression. Antimicrob. Agents Chemother. 56: 4753-4759. https://doi.org/10.1128/AAC.00334-12 -
Cicek AC, Duzgun AO, Saral A, Sandalli C. 2014. Determination of a novel integron-located variant (
$bla_{OXA-320}$ ) of Class D${\beta}$ -lactamase in Proteus mirabilis. J. Basic Microbiol. 54: 1030-1035. https://doi.org/10.1002/jobm.201300264 - Clinical and Laboratory Standards Institute. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne, Pennsylvania.
- Jeong S, Kim JO, Jeong SH, Bae IK, Song W. 2015. Evaluation of peptide nucleic acid-mediated multiplex real-time PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates. J. Microbiol. Methods. 113: 4-9. https://doi.org/10.1016/j.mimet.2015.03.019
-
Perez-Perez FJ, Hanson ND. 2002. Detection of plasmid-mediated AmpC
${\beta}$ -lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40: 2153-2162. https://doi.org/10.1128/JCM.40.6.2153-2162.2002 -
Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum
${\beta}$ - lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J. Antimicrob. Chemother. 56: 698-702. https://doi.org/10.1093/jac/dki324 - Yamane K, Wachino J, Suzuki S, Arakawa Y. 2008. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob. Agents Chemother. 52: 1564-1566. https://doi.org/10.1128/AAC.01137-07
- Landman D, Bratu S, Quale J. 2009. Contribution of OmpK36 to carbapenem susceptibility in KPC-producing Klebsiella pneumoniae. J. Med. Microbiol. 58: 1303-1308. https://doi.org/10.1099/jmm.0.012575-0
- Yoon E-J, Kim JO, Kim D, Lee H, Yang JW, Lee KJ, et al. 2018. Klebsiella pneumonia carbapenemase producers in South Korea between 2013 and 2015. Front. Microbiol. 9: 56. https://doi.org/10.3389/fmicb.2018.00056
- Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, et al. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60: 1136-1151. https://doi.org/10.1111/j.1365-2958.2006.05172.x
- Diancourt L, Passet V, Verhoef J, Grimont PA, Brisse S. 2005. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43: 4178-4182. https://doi.org/10.1128/JCM.43.8.4178-4182.2005
- Jeong SH, Lee KM, Lee J, Bae IK, Kim JS, Kim HS, et al. 2015. Clonal and horizontal spread of the blaOXA-232 gene among Enterobacteriaceae in a Korean hospital. Diagn. Microbiol. Infect. Dis. 82: 70-72. https://doi.org/10.1016/j.diagmicrobio.2015.02.001
- Leavitt A, Chmelnitsky I, Ofek I, Carmeli Y, Navon-Venezia S. 2010. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J. Antimicrob. Chemother. 65: 243-248. https://doi.org/10.1093/jac/dkp417
- Tsai YK, Fung CP, Lin JC, Chen JH, Chang FY, Chen TL, et al. 2011. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 55: 1485-1493. https://doi.org/10.1128/AAC.01275-10
- Kim SY, Shin J, Shin SY, Ko KS. 2013. Characteristics of carbapenem-resistant Enterobacteriaceae isolates from Korea. Diagn. Microbiol. Infect. Dis. 76: 486-490. https://doi.org/10.1016/j.diagmicrobio.2013.04.006
- Schulz J, Kemper N, Hartung J, Janusch F, Mohring SAI, Hamscher G. 2019. Analysis of fluoroquinolones in dusts from intensive livestock farming and the co-occurrence of fluoroquinolone-resistant Escherichia coli. Sci. Rep. 9: 5117. https://doi.org/10.1038/s41598-019-41528-z
- Dalhoff A. 2012. Global fluoroquinolone resistance epidemiology and implications for clinical use. Interdiscip. Perspect. Infect. Dis. 2012: 976273. https://doi.org/10.1155/2012/976273
- Sarkozy G. 2001. Quinolones: a class of antimicrobial agents. Vet. Med. 46: 257-274. https://doi.org/10.17221/7883-VETMED
- Grobbel M, Lubke-Becker A, Wieler LH, Froyman R, Friederichs S, Filios S. 2007. Comparative quantification of the in vitro activity of veterinary fluoroquinolones. Vet. Microbiol. 124: 73-81. https://doi.org/10.1016/j.vetmic.2007.03.017
- Frye JG, Jackson CR. 2013. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol. 4: 135. https://doi.org/10.3389/fmicb.2013.00135
- Hopkins KL, Davies RH, Threlfall EJ. 2005. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int. J. Antimicrob. Agents 25: 358-373. https://doi.org/10.1016/j.ijantimicag.2005.02.006
- Endtz HP, Ruijs GJ, van Klingeren B, Jansen WH, van der Reyden T, Mouton RP. 1991. Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J. Antimicrob. Chemother. 27: 199-208. https://doi.org/10.1093/jac/27.2.199
- Garcia Ovando H, Gorla N, Luders C, Poloni G, Errecalde C, Prieto G, et al. 1999. Comparative pharmacokinetics of enrofloxacin and ciprofloxacin in chickens. J. Vet. Pharmacol. Ther. 22: 209-212. https://doi.org/10.1046/j.1365-2885.1999.00211.x
- van den Bogaard AE, London N, Driessen C, Stobberingh EE. 2001. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J. Antimicrob. Chemother. 47: 763-771. https://doi.org/10.1093/jac/47.6.763
- Leclercq R, Canton R, Brown DF, Giske CG, Heisig P, MacGowan AP, et al. 2013. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol. Infect. 19: 141-160. https://doi.org/10.1111/j.1469-0691.2011.03703.x
-
Sheppard AE, Stoesser N, Wilson DJ, Sebra R, Kasarskis A, Anson LW, et al. 2016. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene
$bla_{KPC}$ . Antimicrob. Agents Chemother. 60: 3767-3778. https://doi.org/10.1128/AAC.00464-16 - Pitout JD, Nordmann P, Poirel L. 2015. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob. Agents Chemother. 59: 5873-5884. https://doi.org/10.1128/AAC.01019-15
- Villa L, Feudi C, Fortini D, Brisse S, Passet V, Bonura C, et al. 2017. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb. Genom. 3: e000110. https://doi.org/10.1099/mgen.0.000110
- Geraci DM, Bonura C, Giuffre M, Saporito L, Graziano G, Aleo A, et al. 2015. Is the monoclonal spread of the ST258, KPC-3-producing clone being replaced in southern Italy by the dissemination of multiple clones of carbapenem-nonsusceptible, KPC-3-producing Klebsiella pneumoniae? Clin. Microbiol. Infect. 21: e15-e17. https://doi.org/10.1016/j.cmi.2014.08.022
- Roer L, Overballe-Petersen S, Hansen F, Schonning K, Wang M, Roder BL, et al. 2018. Escherichia coli sequence type 410 is causing new international high-risk clones. mSphere 3: e00337-18.
- Korea Centers for Disease Control and Prevention. Distribution of carbapenem-resistant Enterobacteriaceae (CRE) in Korea, 2017. Available from https://is.cdc.go.kr/upload_comm/syview/doc.html?fn=156811210482900.pdf&rs=/upload_comm/docu/0034/. Accessed Dec. 11, 2019.