참고문헌
- Kogan G, Soltes L, Stern R, Gemeiner P. 2007. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17-25. https://doi.org/10.1007/s10529-006-9219-z
- Song HL, Kwon T, Lee JW. 2016. The global market trend and perspectives of hyaluronic acid. J. Chitin Chitosan. 21: 1-5. https://doi.org/10.17642/jcc.21.1.1
- Shukla V, Parasu Veera U, Kulkarni P, Pandit A. 2001. Scale-up of biotransformation process in stirred tank reactor using dual impeller bioreactor. Biochem. Eng. J. 8: 19-29. https://doi.org/10.1016/S1369-703X(00)00130-3
- Grand view research. Hyaluronic Acid Market Size Worth $16.6 Billion By 2027 I CAGR: 8.1%. Available from https://www.grandviewresearch.com/press-release/global-hyaluronic-acidmarket (Accessed on Aug. 10, 2020).
- Cheng F, Gong Q, Yu H, Stephanopoulos G. 2016. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol. J. 11: 574-584. https://doi.org/10.1002/biot.201500404
- Prasad SB, Jayaraman G, Ramachandran KB. 2010. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis Appl. Microbiol. Biotechnol. 86: 273-283. https://doi.org/10.1007/s00253-009-2293-0
- Izawa N, Serata M, Sone T, Omasa T, Ohtake H. 2011. Hyaluronic acid production by recombinant Streptococcus thermophilus. J. Biosci. Bioeng. 111: 665-670. https://doi.org/10.1016/j.jbiosc.2011.02.005
- Mao Z, Shin H, Chen R. 2009. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl. Microbiol. Biotechnol. 84: 63-69. https://doi.org/10.1007/s00253-009-1963-2
- Chen WY, Marcellin E, Hung J, Nielsen LK. 2009. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J. Biol. Chem. 284: 18007-18014. https://doi.org/10.1074/jbc.M109.011999
- Prasad SB, Ramachandran KB, Jayaraman G. 2012. Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis. Appl. Microbiol. Biotechnol. 94: 1593-1607. https://doi.org/10.1007/s00253-012-3944-0
-
Hasegawa S, Nagatsuru M, Shibutani M, Yamamoto S, Hasebe S. 1999. Productivity of concentrated hyaluronic acid using a
$Maxblend^{(R)}$ fermentor. J. Biosci. Bioeng. 88: 68-71. https://doi.org/10.1016/S1389-1723(99)80178-9 - Heo BY. 2013. Strain Improvement and Statistical Medium Optimization for Enhanced Production of Hyaluronic Acid by Streptococcus zooepidemicus. M.S. Kangwon National University. Republic of Korea.
- Chen SJ, Chen JL, Huang WC, Chen HL. 2009. Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean J. Chem. Eng. 26: 428-432. https://doi.org/10.1007/s11814-009-0072-3
- Lai ZW, Rahim RA, Ariff A, Mohamad R. 2011. Medium formulation and impeller design on the biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. Afr. J. Microbiol. Res. 5: 2114-2123.
- Armstrong DC, Johns MR. 1997. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Appl. Environ. Microbiol. 63: 2759-2764. https://doi.org/10.1128/AEM.63.7.2759-2764.1997
- Duan XJ, Yang L, Zhang X, Tan WS. 2008. Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J. Microbiol Biotechnol. 18: 718-724.
- Zhang X, Duan XJ, Tan WS. 2010. Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. Food Chem. 119: 1643-1646. https://doi.org/10.1016/j.foodchem.2009.09.014
- Kim SJ, Park SY, Kim CW. 2006. A novel approach to the production of hyaluronic acid by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 16: 1849-1855.
- Duan XJ, Niu HX, Tan WS, Zhang X. 2009. Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 19: 299-306. https://doi.org/10.4014/jmb.0801.073
- Lai ZW, Rahim RA, Ariff AB, Mohamad R. 2012. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed. J. Biosci. Bioeng. 114: 286-291. https://doi.org/10.1016/j.jbiosc.2012.04.011
- Blank LM, Hugenholtz P, Nielsen LK. 2008. Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic Streptococci. J. Mol. Evol. 67: 13-22. https://doi.org/10.1007/s00239-008-9117-1
- Shah MV, Badle SS, Ramachandran KB. 2013. Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway. Biochem. Eng. J. 80: 53-60. https://doi.org/10.1016/j.bej.2013.09.013
- Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A. 2012. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu. Rev. Food Sci. Technol. 3: 37-58. https://doi.org/10.1146/annurev-food-022811-101255
- Condon S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 3: 269-280. https://doi.org/10.1111/j.1574-6968.1987.tb02465.x
- Cleary PP, Larkin A. 1979. Hyaluronic acid capsule: strategy for oxygen resistance in group A streptococci. J. Bacteriol. 140: 1090-1097. https://doi.org/10.1128/JB.140.3.1090-1097.1979
- Rhaese HJ, Boetk NK. 1973. The molecular basis of mutagenesis by methyl and ethyl methanesulfonates Eur. J. Biochem. 32: 166-172. https://doi.org/10.1111/j.1432-1033.1973.tb02593.x
- Armstrong DC, Cooney MJ, Johns MR. 1997. Growth and amino acid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus. Appl. Microbiol. Biotechnol. 47: 309-312. https://doi.org/10.1007/s002530050932
- Shin WS, Lee D, Kim S, Jeong YS, Chun GT. 2013. Application of scale-up criterion of constant oxygen mass transfer coefficient (kLa) for production of itaconic acid in a 50 L pilot-scale fermentor by fungal cells of Aspergillus terreus. J. Microbiol. Biotechnol. 23: 1445-1453. https://doi.org/10.4014/jmb.1307.07084
- Bitter T, Muir HM. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-334. https://doi.org/10.1016/0003-2697(62)90095-7
-
Alves FG, Filho FM, De Medeiros Burkert JF, Kalil SJ. 2010. Maximization of
${\beta}$ -galactosidase production: A simultaneous investigation of agitation and aeration effects. Appl. Biochem. Biotechnol. 160: 1528-1539. https://doi.org/10.1007/s12010-009-8683-z - Herbst H, Schumpe A, Deckwer W. 1992. Xanthan production in stirred tank fermenters: Oxygen transfer and scale-up. Chem. Eng. Technol. 15: 425-434. https://doi.org/10.1002/ceat.270150610
- Mehmood N, Olmos E, Marchal P, Goergen J, Delaunay S. 2010. Relation between pristinamycins production by Streptomyces pristinaespiralis, power dissipation and volumetric gas-liquid mass transfer coefficient, kLa. Process Biochem. 45: 1779-1786. https://doi.org/10.1016/j.procbio.2010.02.023
- Bodizs L, Titica M, Faria N, Srinivasan B, Dochain D, Bonvin D. 2007. Oxygen control for an industrial pilot-scale fed-batch filamentous fungal fermentation. J. Process Control. 17: 595-606. https://doi.org/10.1016/j.jprocont.2007.01.019
- Roubos JA, Krabben P, Luiten RG, Verbruggen HB, Heijnen J. 2001. A quantitative approach to characterizing cell lysis caused by mechanical agitation of Streptomyces clavuligerus. Biotechnol. Prog. 17: 336-347. https://doi.org/10.1021/bp0001617