DOI QR코드

DOI QR Code

Identification of a Prophage-encoded Abortive Infection System in Levilactobacillus brevis

  • 투고 : 2020.02.25
  • 심사 : 2020.04.24
  • 발행 : 2020.09.28

초록

Abortive infection systems (Abi) are phage resistance systems that can be prophage-encoded. Here, two genes encoding an Abi system were identified on a prophage sequence contained by the chromosome of the Levilactobacillus brevis strain UCCLBBS124. This Abi system is similar to the two-component AbiL system encoded by Lactococcus lactis biovar. diacetylactis LD10-1. The UCCLBBS124 prophage-derived Abi system (designated here as AbiL124) was shown to exhibit specific activity against phages infecting L. brevis and L. lactis strains. Expression of the AbiL124 system was shown to cause reduction in the efficiency of plaquing and cell lysis delay for phages of both species.

키워드

참고문헌

  1. Meignen B, Onno B, Gelinas P, Infantes M, Guilois S, Cahagnier B. 2001. Optimization of sourdough fermentation with Lactobacillus brevis and baker's yeast. Food Microbiol. 18: 239-245. https://doi.org/10.1006/fmic.2000.0395
  2. Endersen L, O'Mahony J, Hill C, Ross RP, McAuliffe O, Coffey A. 2014. Phage therapy in the food industry. Ann. Rev. Food Sci. Technol. 5: 327-349. https://doi.org/10.1146/annurev-food-030713-092415
  3. Mahony J, McAuliffe O, Ross RP, van Sinderen D. 2011. Bacteriophages as biocontrol agents of food pathogens. Curr. Opin. Biotechnol. 22: 157-163. https://doi.org/10.1016/j.copbio.2010.10.008
  4. Deasy T, Mahony J, Neve H, Heller KJ, van Sinderen D. 2011. Isolation of a virulent Lactobacillus brevis phage and its application in the control of beer spoilage. J. Food Prot. 74: 2157-2161. https://doi.org/10.4315/0362-028X.JFP-11-262
  5. Feyereisen M, Mahony J, Lugli GA, Ventura M, Neve H, Franz CMAP, et al. 2019. Isolation and characterization of Lactobacillus brevis phages. Viruses 11: 393. https://doi.org/10.3390/v11050393
  6. Mahony J, McGrath S, Fitzgerald GF, van Sinderen D. 2008. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl. Environ. Microbiol. 74: 6206-6215. https://doi.org/10.1128/AEM.01053-08
  7. Kelleher P, Mahony J, Schweinlin K, Neve H, Franz C, van Sinderen D. 2018. Assessing the functionality and genetic diversity of lactococcal prophages. Int. J. Food Microbiol. 272: 29-40. https://doi.org/10.1016/j.ijfoodmicro.2018.02.024
  8. Deng YM, Liu CQ, Dunn NW. 1999. Genetic organization and functional analysis of a novel phage abortive infection system, AbiL, from Lactococcus lactis. J. Biotechnol. 67: 135-149. https://doi.org/10.1016/S0168-1656(98)00175-8
  9. McGrath S, Fitzgerald GF, van Sinderen D. 2002. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol. Microbiol. 43: 509-520. https://doi.org/10.1046/j.1365-2958.2002.02763.x
  10. Chopin M-C, Chopin A, Bidnenko E. 2005. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8: 473-479. https://doi.org/10.1016/j.mib.2005.06.006
  11. Hill C. 1993. Bacteriophage and bacteriophage resistance in lactic acid bacteria. FEMS Microbiol. Rev. 12: 87-108. https://doi.org/10.1111/j.1574-6976.1993.tb00013.x
  12. Moineau S, Durmaz E, Pandian S, Klaenhammer TR. 1993. Differentiation of two abortive mechanisms by using monoclonal antibodies directed toward lactococcal bacteriophage capsid proteins. Appl. Environ. Microbiol. 59: 208-212. https://doi.org/10.1128/AEM.59.1.208-212.1993
  13. Garvey P, Fitzgerald GF, Hill C. 1995. Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl. Environ. Microbiol. 61: 4321-4328. https://doi.org/10.1128/AEM.61.12.4321-4328.1995
  14. Parreira R, Ehrlich SD, Chopin MC. 1996. Dramatic decay of phage transcripts in lactococcal cells carrying the abortive infection determinant AbiB. Mol. Microbiol. 19: 221-230. https://doi.org/10.1046/j.1365-2958.1996.371896.x
  15. O'Connor L, Coffey A, Daly C, Fitzgerald GF. 1996. AbiG, a genotypically novel abortive infection mechanism encoded by plasmid pCI750 of Lactococcus lactis subsp. cremoris UC653. Appl. Environ. Microbiol. 62: 3075-3082. https://doi.org/10.1128/AEM.62.9.3075-3082.1996
  16. Eguchi T, Doi K, Nishiyama K, Ohmomo S, Ogata S. 2000. Characterization of a phage resistance plasmid, pLKS, of silage-making Lactobacillus plantarum NGRI0101. Biosci. Biotechnol. Biochem. 64: 751-756. https://doi.org/10.1271/bbb.64.751
  17. Feyereisen M, Mahony J, Kelleher P, Roberts RJ, O'Sullivan T, Geertman J-MA, et al. 2019. Comparative genome analysis of the Lactobacillus brevis species. BMC Genomics 20: 416. https://doi.org/10.1186/s12864-019-5783-1
  18. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria. J. Biotechnol. 64: 15-21. https://doi.org/10.1016/S0168-1656(98)00100-X
  19. Braun Jr V, Hertwig S, Neve H, Geis A, Teuber M. 1989. Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization, and protein profiles. Microbiology 135: 2551-2560. https://doi.org/10.1099/00221287-135-9-2551
  20. Christiansen B, Johnsen M, Stenby E, Vogensen F, Hammer K. 1994. Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. J. Bacteriol. 176: 1069-1076. https://doi.org/10.1128/JB.176.4.1069-1076.1994
  21. Blatny JM, Godager L, Lunde M, Nes IF. 2004. Complete genome sequence of the Lactococcus lactis temperate phage $\varphi$LC3: comparative analysis of $\varphi$LC3 and its relatives in lactococci and streptococci. Virology 318: 231-244. https://doi.org/10.1016/j.virol.2003.09.019
  22. Mahony J, Oliveira J, Collins B, Hanemaaijer L, Lugli GA, Neve H, et al. 2017. Genetic and functional characterisation of the lactococcal P335 phage-host interactions. BMC Genomics 18: 146. https://doi.org/10.1186/s12864-017-3537-5
  23. Oliveira J, Mahony J, Hanemaaijer L, Kouwen TRHM, van Sinderen D. 2018. Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. J. Dairy Sci. 101: 96-105. https://doi.org/10.3168/jds.2017-13403
  24. Theodorou I. 2019. Investigation of glycopolymer assembly systems in Lactococcus lactis. University College Cork, Ireland, cora.ucc.ie.
  25. Mahony J, Deveau H, Mc Grath S, Ventura M, Canchaya C, Moineau S. 2006. Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species. FEMS Microbiol. Lett. 261: 253-261. https://doi.org/10.1111/j.1574-6968.2006.00372.x
  26. Bebeacua C, Tremblay D, Farenc C, Chapot-Chartier M-P, Sadovskaya I, van Heel, M. et al. 2013. Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. J. Virol. 87: 12302-12312. https://doi.org/10.1128/JVI.02033-13
  27. Chandry PS, Moore SC, Boyce JD, Davidson BE, Hillier AJ. 1997. Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Mol. Microbiol. 26: 49-64. https://doi.org/10.1046/j.1365-2958.1997.5491926.x
  28. Samson JE, Moineau S. 2010. Characterization of Lactococcus lactis phage 949 and comparison with other lactococcal phages. Appl. Environ. Microbiol. 76: 6843-6852. https://doi.org/10.1128/AEM.00796-10
  29. Mahony J, Randazzo W, Neve H, Settanni L, van Sinderen D. 2015. Lactococcal 949 group phages recognize a carbohydrate receptor on the host cell surface. Appl. Environ. Microbiol. 81: 3299-3305. https://doi.org/10.1128/AEM.00143-15
  30. Villion M, Chopin M-C, Deveau H, Ehrlich SD, Moineau S, Chopin A. 2009. P087, a lactococcal phage with a morphogenesis module similar to an Enterococcus faecalis prophage. Virology 388: 49-56. https://doi.org/10.1016/j.virol.2009.03.011
  31. Svensson U, Christiansson A. 1991. Methods for phage monitoring. Bulletin of the Int. Dairy Federation 263: 29-39.
  32. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic Acids Res. 39: 347-352. https://doi.org/10.1093/nar/gkq749
  33. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44: W16-21. https://doi.org/10.1093/nar/gkw387
  34. McGrath S, Fitzgerald GF, van Sinderen D. 2001. Improvement and optimization of two engineered phage resistance mechanisms in Lactococcus lactis. Appl. Environ. Microbiol. 67: 608-616. https://doi.org/10.1128/AEM.67.2.608-616.2001
  35. van Pijkeren J-P, Britton RA. 2012. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Re. 40: e76. https://doi.org/10.1093/nar/gks147
  36. Ahrne S, Molin G, Axelsson L. 1992.Transformation of Lactobacillus reuteri with electroporation: studies on the erythromycin resistance plasmid pLUL631. Curr. Microbiol. 24: 199-205. https://doi.org/10.1007/BF01579282
  37. Garvey P, Hill C, Fitzgerald G. 1996. The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. Appl. Environ. Microbiol. 62: 676-679. https://doi.org/10.1128/AEM.62.2.676-679.1996
  38. Collins B, Bebeacua C, Mahony J, Blangy S, Douillard FP, Veesler D, et al. 2013. Structure and functional analysis of the host recognition device of lactococcal phage Tuc2009. J. Virol. 87: 8429-8440. https://doi.org/10.1128/JVI.00907-13
  39. Sing WD, Klaenhammer TR. 1990. Characteristics of phage abortion conferred in lactococci by the conjugal plasmid pTR2030. Microbiology 136: 1807-1815.
  40. Ravin V, Raisanen L, Alatossava T. 2002. A conserved C-terminal region in Gp71 of the small isometric-head phage LL-H and ORF474 of the prolate-head phage JCL1032 is implicated in specificity of adsorption of phage to its host, Lactobacillus delbrueckii. J. Bacteriol. 184: 2455-2459. https://doi.org/10.1128/JB.184.9.2455-2459.2002
  41. Stockdale SR, Mahony J, Courtin P, Chapot-Chartier M-P, Van Pijkeren J-P, Britton RA, et al. 2013. The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization. J. Biol. Chem. 288: 5581-5590. https://doi.org/10.1074/jbc.M112.444901