DOI QR코드

DOI QR Code

Orostachys japonicus Hexane Fraction Attenuates Pro-inflammatory Cytokines in LPS-activated Macrophage Cells by Suppression of AP-1 and IRF3 Transcription Factors

LPS로 유도된 대식세포에 대한 와송 핵산추출물의 AP-1과 IRF3 전사인자의 억제에 의한 전염증성 사이토카인의 감소 효과

  • Lee, Hyeong-Seon (Department of Biomedical Laboratory Science, Jungwon University)
  • 이형선 (중원대학교 임상병리학과)
  • Received : 2020.02.26
  • Accepted : 2020.03.31
  • Published : 2020.09.28

Abstract

Orostachys japonicus (O. japonicus) is known as a medicinal plant for the treatment of various symptoms. This study investigated the anti-inflammatory effect of the hexane fraction from O. japonicus (OJH) on the LPS-stimulated response in RAW 264.7 macrophage cells. This study was conducted to confirm the effect of cell cytotoxicity and production of reactive oxygen species (ROS) in OJH-treated macrophage cells. Additionally, pro-inflammatory cytokines and transcription factors were determined using RT-PCR and western blotting assay. OJH showed no change in lactate dehydrogenase (LDH) levels and exhibited reduced ROS levels in LPS-induced inflammatory cells. Moreover, OJH significantly suppressed the mRNA levels of proinflammatory cytokines, including IL-1β, IL-2, IL-6, TNF-α, and IP-10. Furthermore, OJH effectively inhibited the protein levels of AP-1 (p-c-Jun and p-c-Fos) and p-IRF3 in a dose-dependent manner. In conclusion, our results demonstrate that OJH exhibits strong anti-inflammatory activities via regulation of inflammatory factors.

본 연구는 와송에 유기용매를 활용하여 순차적으로 추출하여 항염증 활성에 대한 가능성을 평가하기 하기 위해 수행되었다. 대식세포에 와송 hexane 추출물을 전처리하고 LPS로 염증을 자극하여 염증과 관련한 세포내 신호전달 경로에 미치는 영향을 확인하고자 하였다. 대식세포에 와송 hexane 추출물은 LPS 자극에 의해 세포 독성이 나타나지 않았고, ROS의 생성을 억제하는 것으로 확인되었다. 또한, IL-1β, IL-2, IL-6, IP-10과 같은 전염증성 사이토카인의 분비를 mRNA 수준에서 확인한 결과 탁월하게 억제하였다. 이러한 전염증성 사이토카인의 생성 억제는 상위 전사인자인 AP-1과 IRF3의 조절을 통해 이루어지므로 이들을 단백질 수준에서 발현량을 확인하였다. 그 결과 c-Jun, c-Fos, IRF-3의 인산화 억제로 핵 내 전사활성이 제한되었을 것으로 생각된다. 이들 결과를 종합해볼 때, 와송 hexane 추출물은 염증 반응을 저해하는 효과가 있는 것으로 나타나 다양한 염증성 질환의 예방 및 개선에 유용하게 활용할 수 있을 것으로 생각된다.

Keywords

References

  1. Kim JK, Jun JG. 2015. Licochalcone B exhibits anti-inflammatory effects via modulation of NF-${\kappa}B$ and AP-1. Biomed. Sci. Lett. 21: 218-226. https://doi.org/10.15616/BSL.2015.21.4.218
  2. Gilroy D, De Maeyer R. 2015. New insights into the resolution of inflammation. Semin. Immunol. 27: 161-168. https://doi.org/10.1016/j.smim.2015.05.003
  3. O'Neill LA. 2006. How toll-like receptors signal: what we know and what we don't know. Curr. Opin. Immunol. 18: 3-9. https://doi.org/10.1016/j.coi.2005.11.012
  4. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golen-bock DT, et al. 2003. IKK epsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4: 491-496. https://doi.org/10.1038/ni921
  5. Jeong JB, Hong SC, Jeong HJ, Koo JS. 2012. Anti-inflammatory effects of ethyl acetate fraction from Cnidium officinale Makino on LPS-stimulated RAW 264.7 and THP-1 cells. Korean J. Plant Res. 25: 299-307. https://doi.org/10.7732/kjpr.2012.25.3.299
  6. Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13: 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  7. Yeom MJ, Choi BH, Han DO, Lee HJ, Shim IS. 2007. In vitro inhibition of pro-inflammatory mediator mRNA expression by Nephrite in lipopolysaccharide-induced mouse macrophage cells. Korean J. Oriental Physiol. Pathol. 18: 1622-1627.
  8. Smale ST. 2010. Selective transcription in response to an inflammatory stimulus. Cell 140: 833-844. https://doi.org/10.1016/j.cell.2010.01.037
  9. Kim SG, Choi JW, Park HJ, Lee SM, Jung HJ. 2009. Anti-hyperlipidemic effects of the flavonoid-rich fraction from the methanol extrect of Orostachy japonicus in rats. Korean J. Pharmacogn. 40: 51-58.
  10. Park HJ, Young HS, Kim JO, Rhee SH, Choi JS. 1991. A study on the chemical constituents of Orostachys japonicus A. Berger. Korean J. Pharmacogn. 22: 78-84.
  11. Park JG, Park JC, Hur JM, Park SJ, Choi DR, Shin DY, et al. 2000. Phenolic compounds from Orostachys japonicus having anti-HIV-1 protease activity. Nat. Prod. Sci. 6: 117-121.
  12. Jeong JH, Ryu DS, Suk DH, Lee DS. 2011. Anti-inflammatory effects of ethanol extract from Orostachys japonicus on modulation of signal pathways in LPS-stimulated RAW 264.7 cells. BMB Rep. 44: 399-404. https://doi.org/10.5483/BMBRep.2011.44.6.399
  13. Lee HS, Ryu DS, Lee GS, Lee DS. 2012. Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264. 7 cells: Suppression of NF-${\kappa}B$ activation and MAPK signaling. J. Ethnopharmacol. 140: 271-276. https://doi.org/10.1016/j.jep.2012.01.016
  14. Lee HS, Bilehal D, Lee GS, Ryu DS, Kim HK, Suk DH, et al. 2013. Anti-inflammatory effect of hexane fraction from Orostachys japonicus in RAW 264.7 cells by suppression of NF-${\kappa}B$ and PI3KAkt signaling. J. Funct. Foods. 5: 1217-1225. https://doi.org/10.1016/j.jff.2013.04.004
  15. Kim MJ, Chung YC, Kim SS, Lim CK, Park KJ, Choi YH, et al. 2019. Anti-inflammatory effect of Sechium edule extract in LPS-stimulated RAW 264.7 cells via p-JNK and p-p38 down-regulation. KSBB J. 34: 99-106. https://doi.org/10.7841/ksbbj.2019.34.2.99
  16. Jeong YJ, Nam MK, Kang KJ. 2011. The effect of Angelica keiskei ethanol extract on proliferation, apoptosis and ROS accumulation in human breast cancer MDA-MB-231 cells. J. East Asian Soc. Diet Life. 21: 24-30.
  17. Lee YH, Ho JN, Dong MS, Park JH, Kim HK, Hong BS, et al. 2005. Transfected HepG2 cells for evaluation of catechin effects on alcohol-induced CYP2E1 cytotoxicity. J. Microbiol. Biotechnol. 15: 1310-1316.
  18. Kim YS, Joung NY, Ryu BS, Park PJ, Jeong JH. 2016. Anti-inflammatory activities of exracts from fermented Taraxacum platycarpum D. leaves using Hericium erinaceum mycelia. J. Korean Soc. Food Sci. Nutr. 45: 20-26. https://doi.org/10.3746/jkfn.2016.45.1.020
  19. Choi YJ, Park MH, Kim MH, Jung KI. 2018. Antioxidnat and antiinflammatory effects of Mulberry (Morus alba L.) fermented liquid in LPS-induced RAW 264.7 cells. J. Korean Soc. Food Sci. Nutr. 47: 995-1005. https://doi.org/10.3746/jkfn.2018.47.10.995
  20. Lee YB, Ham YM, Yoon SA, Oh DJ, Song SM, Hong IC, et al. 2017. Antioxidant and anti-inflammatory activities of crud extract and solvent fractions of Allium hookeri. J. Korean Soc. Food Sci. Nutr. 46: 18-25. https://doi.org/10.3746/jkfn.2017.46.1.018
  21. Zeng X, Moore TA, Newstead MW, Deng JC, Lukacs NW, Standiford TJ. 2005. IP-10 mediates selective mononuclear cell accumulation and activation in response to intrapulmonary transgenic expression and during adenovirus-induced pulmonary inflammation. J. Interferon Cytokine Res. 25: 103-112. https://doi.org/10.1089/jir.2005.25.103
  22. Kim HY, Han AR, Kil YS, Seo EK, Jin CH. 2019. Anti-inflammatory effects of Catalpalactone isolated from Catalpa ovate in LPSinduced RAW 264.7 cells. Molecules 24: 1236. https://doi.org/10.3390/molecules24071236
  23. Kim JK, Jun JG. 2015. Licochalcone B exhibits anti-inflammatory effects via modulation of NF-${\kappa}B$ and AP-1. Biomed. Sci. Lett. 21: 218-226. https://doi.org/10.15616/BSL.2015.21.4.218
  24. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, et al. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-${\beta}$ (TRIF) associates with TNF receptor-associated factor 6 and TANK-Binding kinase 1, and activates two distinct transcription factors, NF-${\kappa}B$ and IFN-Regulatory factor-3, in the toll-like receptor signaling. J. Immunol. 171: 4304-4310. https://doi.org/10.4049/jimmunol.171.8.4304