DOI QR코드

DOI QR Code

ON PARTIAL VALUE SHARING RESULTS OF MEROMORPHIC FUNCTIONS WITH THEIR SHIFTS AND ITS APPLICATIONS

  • Noulorvang, Vangty (Department of Mathematics National University of Education) ;
  • Pham, Duc Thoan (Department of Mathematics National University of Civil Engineering)
  • Received : 2019.05.12
  • Accepted : 2020.07.08
  • Published : 2020.09.30

Abstract

In this paper, we give some uniqueness theorems of nonconstant meromorphic functions of hyper-order less than one sharing partially three or four small periodic functions with their shifts. As an application, some sufficient conditions for periodicity of meromorphic functions are given. Our results improve and extend previous results of W. Lin, X. Lin and A. Wu [11].

Keywords

Acknowledgement

The authors wish to express their thanks to the referee for his/her valuable suggestions and comments which help us improve the results, especially main result.

References

  1. G. Brosch, Eindeutigkeitssatze fur meromorphic Funktionen, Thesis, Technical University of Aachen, 1989.
  2. K. S. Charak, R. J. Korhonen, and G. Kumar, A note on partial sharing of values of meromorphic functions with their shifts, J. Math. Anal. Appl. 435 (2016), no. 2, 1241-1248. https://doi.org/10.1016/j.jmaa.2015.10.069
  3. S. Chen and W. Lin, Periodicity and uniqueness of meromorphic functions concerning sharing values, Houston J. Math. 43 (2017), no. 3, 763-781.
  4. S. Chen and A. Xu, Periodicity and unicity of meromorphic functions with three shared values, J. Math. Anal. Appl. 385 (2012), no. 1, 485-490. https://doi.org/10.1016/j.jmaa.2011.06.072
  5. G. G. Gundersen, Meromorphic functions that share three values IM and a fourth value CM, Complex Variables Theory Appl. 20 (1992), no. 1-4, 99-106. https://doi.org/10.1080/17476939208814590
  6. R. Halburd, R. Korhonen, and K. Tohge, Holomorphic curves with shift-invariant hyperplane preimages, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4267-4298. https://doi.org/10.1090/S0002-9947-2014-05949-7
  7. W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
  8. J. Heittokangas, R. Korhonen, I. Laine, and J. Rieppo, Uniqueness of meromorphic functions sharing values with their shifts, Complex Var. Elliptic Equ. 56 (2011), no. 1-4, 81-92. https://doi.org/10.1080/17476930903394770
  9. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, and J. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl. 355 (2009), no. 1, 352-363. https://doi.org/10.1016/j.jmaa.2009.01.053
  10. X.-M. Li and H.-X. Yi, Meromorphic functions sharing four values with their difference operators or shifts, Bull. Korean Math. Soc. 53 (2016), no. 4, 1213-1235. https://doi.org/10.4134/BKMS.b150609
  11. W. Lin, X. Lin, and A. Wu, Meromorphic functions partially shared values with their shifts, Bull. Korean Math. Soc. 55 (2018), no. 2, 469-478. https://doi.org/10.4134/BKMS.b170072
  12. X. Qi, K. Liu, and L. Yang, Value sharing results of a meromorphic function f(z) and f(qz), Bull. Korean Math. Soc. 48 (2011), no. 6, 1235-1243. https://doi.org/10.4134/BKMS.2011.48.6.1235
  13. X. Qi and L. Yang, Sharing sets of q-difference of meromorphic functions, Math. Slovaca 64 (2014), no. 1, 51-60. https://doi.org/10.2478/s12175-013-0186-2
  14. M. Ru, Nevanlinna Theory and Its Relation to Diophantine Approximation, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. https://doi.org/10.1142/9789812810519
  15. K. Yamanoi, The second main theorem for small functions and related problems, Acta Math. 192 (2004), no. 2, 225-294. https://doi.org/10.1007/BF02392741
  16. C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003. https://doi.org/10.1007/978-94-017-3626-8
  17. J. Zhang, Value distribution and shared sets of differences of meromorphic functions, J. Math. Anal. Appl. 367 (2010), no. 2, 401-408. https://doi.org/10.1016/j.jmaa.2010.01.038
  18. J. Zhang and R. Korhonen, On the Nevanlinna characteristic of f(qz) and its applications, J. Math. Anal. Appl. 369 (2010), no. 2, 537-544. https://doi.org/10.1016/j.jmaa.2010.03.038
  19. H. J. Zheng, Unicity theorem for period meromorphic functions that share three values, Chi. Sci. Bull. 37 (1992), no. 1, 12-15. https://doi.org/10.1360/csb1992-37-1-12