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ON PARTIAL VALUE SHARING RESULTS OF
MEROMORPHIC FUNCTIONS WITH THEIR SHIFTS
AND ITS APPLICATIONS

VANGTY NOULORVANG AND Duc THOAN PHAM

ABSTRACT. In this paper, we give some uniqueness theorems of noncon-
stant meromorphic functions of hyper-order less than one sharing partially
three or four small periodic functions with their shifts. As an applica-
tion, some sufficient conditions for periodicity of meromorphic functions
are given. Our results improve and extend previous results of W. Lin, X.
Lin and A. Wu [11].

1. Introduction

Throughout this paper, we assume that the reader is familiar with the fun-
damental concepts of Nevanlinna’s value distribution theory [7,14,16] and in
particular with the most usual of symbol m(r, f), N(r, f) and T'(r, f) with a
meromorphic function f on C.

Consider a meromorphic function f on C, the order p(f) and the hyper-order
~v(f) of f are defined respectively by

) log™ T(r, f) ) logt log™ T(r, f)
p(f) = higsogp “logr v(f) = hgs;p og :

We denote by S(r, f) a quantity equal to o(T'(r, f)) for all » € (1, c0) outside
a finite Borel measure set. In particular, we denote by Si(r, f) any quantity
satisfying S1(r, f) = o(T'(r, f)) as r — oo outside of a possible exceptional set
of finite logarithmic measure.

We denote S(f) as the family of all meromorphic functions « such that
T(r,a) = o(T(r, f)) as r — oo outside of a possible exceptional set of finite
logarithmic measure and let S(f) = S(f) U {oc}. For each a € S(f), we say
that two meromorphic functions f and g share a IM if f —a and g — a have the
same zeros. If f —a and g —a have the same zeros with the same multiplicities,
then we say that f and g share a CM.
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The next, for positive integers m and k (maybe k,m = 4+00), we denote by
E][cr)n] (a, f) the set of zeros of f — a with multiplicity [ < k, where a zero with
multiplicity [ is counted [ times if [ < m, otherwise the zero is counted m times

[m]

in the set. The counting function corresponding to Ek) (a, f) is denoted by

N ,Lr)n] (r7 f—ia) Similarly, we also denote by N([;cn] (r, ﬁ) the counting func-
tion of those a-points of f whose multiplicities are not less than k in counting
the a-points of f.

In case m = 1, the symbol E,[cl)] (a, f) is replaced by symbol Ek)(a,f). It
means that Ey)(a, f) is the set of zeros of f — a with multiplicity I < k,
where a zero with multiplicity [ is counted only once in the set. The reduced
counting functions are denoted by Nk) (r, ﬁ) and N(k (r, ﬁ) Ifm=+4oc0
(respectively k = 4-00), we omit character ™ (respectively ).

Obviously, if E(a, f) = E(a, f), then f and g share a IM and if E(a, f) =
E(a, f), then f and g share a CM.

The deficiency and reduced deficiency of a with respect to f are defined
respectively as follows:

o N(r ) o N(r )
d(a, f)=1 llgsogp T f) O(a, f)=1 llgsotolp o)

In recent years, uniqueness problem of meromorphic functions sharing values
with their shifts is investigated intensively by many authors (see in [2,5,8-13,
17,18]). For instance, in 2009 J. Heittokangas et al. [9] considered the problem
of value sharing for shift of a meromorphic function of finite order with three
values CM. After that, the result was improved for the case of two shared values
CM and one shared value IM also by these authors.

In early 2016, K. S Charak, R. J. Korhonen and G. Kumar [2] gave an
example to show that the case one shared values CM and two shared value IM
(and hence three shared values IM) does not hold in general.

The notion of partial value sharing of a meromorphic function of hyper-
order less than one and its shift was also introduced by K. S. Charak, R. J.
Korhonen and G. Kumar in [2]. Then, they obtained an uniqueness theorem
of a nonconstant meromorphic function partially sharing four values with its
shifts under an appropriate deficiency assumption as follows.

Theorem A ([2]). Let f be a nonconstant meromorphic function of hyper-
order v(f) < 1 and ¢ € C\ {0}. Let ay,as,a3,a4 € S(f) be four distinct
periodic functions with period c. If §(a, f) > 0 for some a € g(f) and

E(aj7 f(Z)) g E(aja f(Z + C))) j = 1) 273747
then f(z) = f(z+c¢) for all z € C.

In 2018, W. Lin, X. Lin and A. Wu [11] obtained a counterexample which
showed that Theorem A does not hold when the condition “partially shared
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values E(aj, f(2)) C E(aj, f(z +¢)), j = 1,2” is replaced by the condition
“truncated partially shared values Eyy(aj, f(c)) € Ey(aj, f(z+¢)), j = 1,27
with a positive integer k, even if f(z) and f(z + ¢) share az,ay CM. Then,
they introduced the following results under a reduced deficiency assumption
(0, f) +O(c0, f) > %_H An example was also given to show that this condi-
tion is necessary and sharp.

Theorem B ([11]). Let f be a nonconstant meromorphic function of hyper-
order v(f) < 1 and ¢ € C\ {0}. Let k1, ke be two positive integers, and let
ar,as € S(f)\{0}, as,aqs € S(f) be four distinct periodic functions with period
¢ such that f(z) and f(z + ¢) share az,as CM and

Ey;y(aj, f(2)) € Ey,y(aj, f(z+¢), j=1,2.

If 60, f) + ©(c0, f) > k%—l’ where k := min{ky, ko}, then f(z) = f(z+¢) for
all z € C.

Theorem C ([11]). Let f be a nonconstant meromorphic function of hyper-
order v(f) < 1,0(c0, f) =1 and ¢ € C\ {0}. Let a1,az2,a3 € S(f) be three
distinct periodic functions with period ¢ such that f(z) and f(z + ¢) share as
CM and

Eyy(az, f(2)) C Eyy(aj, f(z+¢)), j=1,2
If k > 2, then f(z) = f(z +¢) for all z € C.

The periodic functions and elliptic functions have found a wide utilization in
many fields [1,3,4,19]. Therefore, it is interesting and important to study the
periodicity of meromorphic functions. As an application of Theorems B and C,
the above authors gave the sufficient conditions for periodicity of meromorphic
functions as follows.

Theorem D ([11]). Assume that f and g are two nonconstant meromorphic
functions with ©(oco, f) = ©(c0, g) = 1, where f has a nonzero periodic ¢ € C\
{0} with hyper-order v(f) < 1. Let ki, ko be two positive integers, ay,as,az €
S(f) be three distinct periodic functions with period ¢ such that f and g share
a3 CM and

Ey(aj, f) € Eplaj,g), 5=1,2.

Then g is a function with periodic T', where T € {c,2c}, that is g(z) = g(z+T)
for all z € C.

In this article, the first aim is to generalize and improve Theorems B and
C by reducing the number of shared values. The second aim is to give some
uniqueness theorems in this direction as well as some of their applications.
Namely, we will prove the following results.

Theorem 1.1. Let f be a meromorphic function of hyper-order v(f) < 1 and
let c € C\ {0}. Let ai,az,a3 € S(f) be three distinct periodic functions with
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period ¢ and let k be a positive integer. Assume that f(z) and f(z + ¢) share
partially a1,a2 CM, i.e.,

E(a1, f(2)) € E(ay, f(z +¢)), E(az, f(2)) C E(ag, f(z +¢))
and
Epy(as, f(2)) C Exy(as, f(z +¢)).
If©(a, f) > 27 for somea € S()\{as, %}, then f(z) = f(z+c¢)
for all z € C.

Corollary 1.2. Let f be a nonconstant meromorphic function of hyper-order
v(f) < 1,0(c0,f) =1 and ¢ € C\ {0}. Let a,as € S(f) be two distinct
periodic functions with period ¢ such that f(z) and f(z + ¢) share partially a;
CM, i.e.,
E(al, f(z)) - E(al, f(Z + C))

and

Eyy(az, f(2)) C Ep(az, f(2 +¢)).
If k> 2, then f(2) = f(#+¢) for all z € C.

Theorem 1.1 and Corollary 1.2 improve strongly Theorems B and C respec-
tively.

Obviously, Theorem 1.1 is sharp. Indeed, we recall the example in [11]. Let
f(z) =sinz and ¢ = 7. It is easy to see that f(z) and f(z + ¢) share 0 and
oo CM, ie., E(0, f(2)) = E(0, f(z+¢)) and E(oo, f(z)) = E(oc0, f(z+¢)), and
Ey)(1, f(2)) = Eny(1, f(z+ ¢)) =0, but f(z+ c) = —f(z) for all z € C. Here,
the condition O(a, f) > H_ik = 1 with some a # %1 is not satisfied.

In the case k = co, we have the following theorem.

Theorem 1.3. Let f be a meromorphic function of hyper-order v(f) < 1 and
let ¢ € C\ {0}. Let ay,az,as € S(f) be three distinct periodic functions with
period c. Assume that f(z) and f(z + ¢) share partially ai,as CM and share
partially az IM, i.e.,

E(ay, f(2)) € E(ar, f(z +¢)), Elaz, f(2)) € E(az, f(z +¢))
and
Blas, f(2)) € Blas, f(z +¢)).
If ©(a, f) > 0 for some a € S(f)\ {as}, then f(z) = f(z+¢) for all z € C.

Omitting the deficiency assumption, we will have the following results.

Theorem 1.4. Let f be a meromorphic function of hyper-order y(f) < 1 and
let c € C\ {0}. Let k,1 be two positive integers and let ay,az, a3, a4 € S(f) be
four distinct periodic functions with period c. Assume that f(z) and f(z + ¢)
share partially a1,as CM and

Eyy(as, f(2)) C Exylas, f(z+¢)), Eplas, f(2)) € Ep(as, f(z +¢)).
Then the following statements hold:
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(i) If kI > min{k,1} + 2, then f(z) = f(z +¢) or ;Eig:g; = fﬂiigig for
all z € C. Moreover, the latter occurs only when ¢i=ft = —Z8=21.

(ii) If max{k,l} = oo, then f(z) = f(z +¢) for all z € C.

Using the idea in the proof of Theorem D, we get a similar result which is
considered an application of Theorem 1.1 and Corollary 1.2.

Theorem 1.5. Assume that f and g are two nonconstant meromorphic func-
tions with © (oo, f) = ©(c0, g) = 1, where f has a nonzero periodic ¢ € C\ {0}
with hyper-order v(f) < 1. Let k be a positive integer and let a1,as € S(f) be
two distinct periodic functions with period ¢ such that f and g share partially
a1 CM and

Ek) (a27 f) - Ek‘) (a27g)'
If k > 2, then g is a function with periodic ¢, that is g(z) = g(z + ¢) for all
ze€C.

By the same argument as in the proof of Theorem 1.5, we also get a result
in this form from applying Theorem 1.4.

Theorem 1.6. Assume that f and g are two nonconstant meromorphic func-
tions, where f has a nonzero periodic ¢ € C\{0} with hyper-order y(f) < 1. Let
k.l be two positive integers and let a1,as € S(f) \ {0} be two distinct periodic
functions with period ¢ such that

E(0, f) € E(0,9), E(co, f) € E(c0,g)
and
Eyy(a1, f) € Eyy(a1,g), Ey(az, f) € Ep(az, g).

Then the following statements hold:

(i) If kl > min{k,l} + 2, then g is a function with periodic T, where T €
{¢,2¢}, that is g(z) = g(z + T) for all z € C.

(ii) If max{k,l} = oo, then g is a function with periodic c, that is g(z) =
g(z+c¢) for all z € C.

2. Some lemmas

Lemma 2.1 ([15, Corollary 1]). Let f be a nonconstant meromorphic function
on C. Let a,asz,...,aq (¢ > 3) be q distinct small meromorphic functions of
f on C. Then the following holds

1
f—ai
Lemma 2.2 ([6]). Let f be a nonconstant meromorphic function and ¢ € C.
If f is of finite order, then

min o) 0 (FE07( )

(Q72)T(7"7f) SZN(rv )+S(T.7f)
i=1
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for all r outside of a subset E zero logarithmic density. If the hyper-order v(f)
of f is less than one, then for each € > 0, we have

m(r, f(;(j)C)) - (rlT(VT(’fJ;)E>

for all r outside of a subset finite logarithmic measure.

Lemma 2.3 ([6, Lemma 8.3]). Let T : Rt — R be a non-decreasing contin-
uwous function, and let s € (0,400) such that hyper-order of T is strictly less
than one, i.e.,
+ 100+
5 = limsup 28108 ()
r—00 log r
then

T(r+5)T(7~)+O< T(r) >

1—v—e
r
where € > 0 and r — oo outside a subset of finite logarithmic measure.

For each meromorphic function f, we denote f.(z) = f(z + ¢) and A.f :=
fc - f

Lemma 2.4 ([6, Theorem 2.1]). Letc € C, and let f be a meromorphic function
of hyper-order < 1 such that A.f # 0. Let ¢ > 2 and a1(2), .. ., aq(2) be distinct
meromorphic periodic small functions of f with period c. Then

m(r, f) + Zm(r, #) <2T(r, f) — Npair(r, ) + S1(r, f),
k=1

= ak
where
Nipair(r, f) = 2N (r, f) = N(r,Acf) + N(r, Aif).
c
Lemma 2.5 ([16]). Let f be a nonconstant meromorphic function. If g = Z}{j_‘g,

where a,b,c,d € S(f) and ad — be Z 0, then
T(r,g) =T(r )+ S(r f).
3. Proof of Theorem 1.1
Suppose that f # f.. Without loss of generality, we can assume that
ai,az,as3 € S(f). We put
_ f—a1 az—as
g - - . -
f—a az—a
Then, by Lemma 2.5, we have T'(r,g) = T(r,f) + S
~v(f) < 1. Applying Lemma 2.2, we get
m(r, g) = Si(r,g) = Si(r, f).

We claim that E(b;, g) C E(bi, g.)UPole(araz)UZero(a; —az) (i = 1,2) and
Fk)(bg, g) C Ek)(bg,gc) UPole(ajazas)UZero(a; —az), where by := 0, by := 00,

Q

(&

and h =

—~

r, f) and hence y(g) =
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by := 1 and Pole(ajazas) and Zero(a; — az) denote the sets of all poles of
a1, asz,az and all zeros of a; — ay respectively.
Indeed, let zy € E(0, g) with multiplicity & > 0. Assume that

20 & Pole(aras) U Zero(a; — as).

It follows that zg is a zero or a pole of functions f — aq or f — ao.

Assume that zg € E(aq, f) with multiplicity m. By the assumption, zo €
E(ay, f.) with multiplicity m. Then f(z9) = a1(20) = a # oo and also f.(z0) =
a1(z0) = a. If az(z9) = a, then zyp € Zero(a; — az). Otherwise, f(zy) —
az(z9) # 0,00 and fo(z0) — a2(z9) # 0,00. This means that m = k, and
hence zg € E(0, g.) with multiplicity k. It implies that E(0,g9) C E(0,9.) U
Pole(ayaz) U Zero(ay — ag).

By the same arguments for by = oo and b3 = 1, we get E (00, g) C E(00, g.)U
Pole(ayaz)UZero(ay—asz) and Ek)(l,g) C Ek)(l, ge)UPole(ayazaz)UZero(a; —
az). Therefore, we get the claim.

By the Claim and since a; (i = 1,2, 3) are small functions of f, it is easy to
see that

N(rh)+ N(r,7)

(3.1) .

— (V) = M) + (N ) - N D) ) 4 510,

c

According to Lemma 2.3, for any a € S'(f) we have
) < N(r+ |,

ge —a g_a)

(3.2) :N“gia”+“ﬁ“@ia

g —CL) +Sl(rag)‘

Applying (3.2) to a = 0,00 and together this with (3.1) we obtain

N(r,

)

< N(r,

1
N(r, h) + N(r, E) < Si(r, f).
Therefore, we obtain
(3.3) T(r,h) = Si(r, f).
The assumption f # f. implies g # g., so h Z 1. Then, we have
1 — 1

= Nyy(r, ——) = Si(r,9).

f*ag) k)( g*bg) 1( g)

Otherwise, take zo € Ey(bs, g), then zo € Ey)(bs, g.) and hence h(z) = 1. It
follows from (3.3) that h = 1, which contradicts our assumption.
We set

(34) Nk) (’I“,

c—b hg—1b
ng 3 _ g 3%&0.
g—bs g—b3
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By the Claim again, we can show that

N@@+N@?

_ _ _ 1 _
< N(r,gc) = N(r,9) +N(r,g_b3) + N (r, gc_bg) + Si(r, f).

Also applying (3.2) again to a = oo and a = b3, and using the equality (3.4),
it is easy to see that

N(rp) + N () <2 (r =) + 5i(0.f)

— 1
= 2N (41 (r, — b3) + S1(r, f)-

We now apply Lemmas 2.1 and 2.5 for each a # 0, 0o, we obtain

ia) +51(T,g)

T(r,p) < N(r,p) + N(r, ]%) + N (r,

— 1 — 1
< 2N (g1 (y bg) +N(r, = a) + S1(r, 9)
2 1 — 1
N N
<o (r’g—bg) + N(r, 7(1) + S1(r, 9)
— 1
< k+1T(r,p)+N(r, 7Q)+S1(r,p).
It follows from the definition of the deficiency that
b3
O(a,p) < il , Ya # 0,00, i.e., Oa,g) < il Va;ébg,
Rewrite p as follows
b ge—bs _ ge—b3
g—bs F—bs
Repeating the above argument, we have
O(a, g.) < Va # bz, bsh.

k+1
If h # —1, then bf # bzh. Since O(a, g) = O(a, g.), it is easy to see that

(3.5) O(a,g) < Pl 2 Va # bs.
If h = —1, then 73 = bszh. It is easy to see that

(3.6) O(a, f) < il Va % +bs.
From (3.5)-(3.6) and by simple calculatlon, we get

2 ag(a1 + a2) — 2a1a9
a, —.,Va .
( f)_k+1 7& 2a3—(a1+a2)
The proof of Theorem 1.1 is completed.
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4. Proof of Theorem 1.3

Suppose that f £ f.. Without loss of generality, we consider the functions
g and h as in the proof of Theorem 1.1. We split into two cases.
Case 1: h # —1. By (3.5), we have ©(a,g) < %_H,Va # bs. Letting k — oo, we
get
@(avg) < O,Va # b3'
It follows from Lemma 2.5 that
O(a, f) =0, Ya # as.

Case 2: h = —1. Since g. = —g, obviously 1 is a Picard value of g. So

o) < 5(r,9).

1
N(r,
(rn

Applying Lemma 2.4, we obtain

m(r,g) + m(r, é) + m(r, gi 1)

< 2T(r,g) —2N(r,g) + N(Acg) — N(r, -—) + Si(r,9)

1

Acg
1

< 2T(r,g) — N(r,g) — N(r, 5) + S1(r, 9).

It implies from the definition of characteristic function that

T(r,g) < N(r,

)+ i) < Sir0)

which is impossible. Since the above cases, we arrive at the desired conclusion
of Theorem 1.3.

5. Proof of Theorem 1.4

Suppose that f # f..
(i) Assume that k > . It is easy to see from the assumption k! > min{k, [}+2

that L= > 2-. By (3.4), we have

1+1 k+1°
N(r ) = Ny (1, ) + N (1 o) + 81 f)
f—ay f—ay f—ay
1
< N
=141 (r’ffag)—i_Sl(T’g)
1
< -7 .
S (r, f) + Si(r, f)
It follows that
5.1)  Oanf) > —— > 2 e Obag) > —— > 2
' B i T i A L T

aq4—aq . az—az

where by 1= o aa-
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Suppose that ¢4=01 # —22=4L. It implies that a4 # as(aitas)—da1ay A,

az—asg 2a3—(a1+az)
plying Theorem 1.1, we obtain ¢ = g. and therefore, f(z) = f(z + ¢) for all
z e C.
Suppose that % = % It implies that by = —b3. Similar to the
proof of Theorem 1.3, we again consider the functions g and h as in the proof
of Theorem 1.1.

If h £ —1, then by (3.5), we have O(a,g) < Va # bs. This contradicts

= k+1>
(5.1) and hence this case can not happen. Therefore, we obtain h = —1, i.e.,
g = —g.. It follows that ?8 o= ;Ezii; o forall c € C.
(ii) Assume that k = co. By (5.1), we have
l 1
© >—>->0
(a47f) =1 1= 9 >

Applying Theorem 1.3, we obtain f(z) = f(z + ¢) for all z € C. The proof of
Theorem 1.4 is completed.

6. Proof of Theorem 1.5

Applying Lemma 2.1, we have

1

T(’I’,f) SN(T7f) +N(Ta ﬁ) +N<T7 fi) +S(’I",f)

— as

_ 1 — 1 — 1
SN(T,m)+Nk)(T,m)+N(k+1(ram)+s(rvf)

_ — 1 1 1
SN(r,g_a1)+Nk)(T,g_a2)+k+1N(T,f_a2)+S(7”,f)
< 27(r,) + 370 )+ 50, ).

It implies that
T(r, f) <3T(r,g)+ S(r, f).

Similarly, we also have
r,g) <3T(r, f)+ S(r,9).

T(
It follows that S(r,f) = S(r,g) which implies v(g) = v(f) < 1. Since the
assumption f(z) = f(z +¢) for all z € C and f, g share partially a; CM, it is
easy to see that g(z) and g(z + ¢) also share partially a; CM. In addition,

Ep(a2,9(2)) = Exy(az, f(2)) = Ey (a2, f(z +¢)) = Eyy(az, (2 + ).

It implies that g satisfies the conditions of Corollary 1.2. Hence, applying this
corollary, we obtain g(z) = g(z + ¢) for all z € C. The proof of Theorem 1.5 is
completed.

Acknowledgements. The authors wish to express their thanks to the ref-
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