DOI QR코드

DOI QR Code

Electrocaloric Effect in Emerging Fluorite-Structure Ferroelectrics

새로운 플루오라이트 구조 강유전체의 Electrocaloric Effect

  • Yang, Kun (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Ju Yong (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Dong Hyun (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Min Hyuk (School of Materials Science and Engineering, Pusan National University)
  • 양건 (부산대학교 재료공학부) ;
  • 박주용 (부산대학교 재료공학부) ;
  • 이동현 (부산대학교 재료공학부) ;
  • 박민혁 (부산대학교 재료공학부)
  • Received : 2020.07.27
  • Accepted : 2020.08.21
  • Published : 2020.09.27

Abstract

The electrocaloric effect can be observed in pyroelectric materials based on conversion between electrical and thermal energy, and can be utilized for the future environment-friendly refrigeration technology. Especially, a strong electrocaloric effect is expected in materials in which field-induced phase transition can be achieved. Emerging fluorite-structure ferroelectrics such as doped hafnia and zirconia, first discovered in 2011, are considered the most promising materials for next-generation semiconductor devices. Besides application of fluorite-structure ferroelectrics for semiconductor devices based on their scalability and CMOS-compatibility, field-induced phase transition has been suggested as another interesting phenomenon for various energy-related applications such as solid-state cooling with electrocaloric effect as well as energy conversion/storage and IR/piezoelectric sensors. Especially, their giant electrocaloric effect is considered promising for solid-state-cooling. However, the electrocaloric effect of fluorite-structure oxides based on field-induced phase transition has not been reviewed to date. In this review, therefore, the electrocaloric effect accompanied by field-induced phase transition in fluorite-structure ferroelectrics is comprehensively reviewed from fundamentals to potential applications.

Keywords

References

  1. T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder and U. Bottger, Appl. Phys. Lett., 99, 102903 (2011). https://doi.org/10.1063/1.3634052
  2. M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick and C. S. Hwang, Adv. Mater., 27, 1811 (2015). https://doi.org/10.1002/adma.201404531
  3. O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda and T. Kikegawa, J. Am. Ceram. Soc., 84, 1369 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00843.x
  4. O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K. Kuroda and T. Kikegawa, Phys. Rev. B: Condens. Matter Mater. Phys., 63, 174108 (2001). https://doi.org/10.1103/physrevb.63.174108
  5. U. Schroeder, E. Yurchuk, J. Muller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M. I. Popovici, S. V. Kalinin and T. Mikolajick, Jpn. J. Appl. Phys., 53, 08LE02 (2014). https://doi.org/10.7567/JJAP.53.08LE02
  6. M. H. Park, T. Schenk, C. M. Fancher, E. D. Grimley, C. Zhou, C. Richter, J. M. LeBeau, J. L. Jones, T. Mikolajick and U. Schroeder, J. Mater. Chem. C, 5, 4677 (2017). https://doi.org/10.1039/C7TC01200D
  7. P. Polakowski and J. Muller, Appl. Phys. Lett., 106, 232905 (2015). https://doi.org/10.1063/1.4922272
  8. K. D. Kim, M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, T. Gwon and C. S. Hwang, J. Mater. Chem. C, 4, 6864 (2016). https://doi.org/10.1039/C6TC02003H
  9. T. Mittmann, M. Materano, P. D. Lomenzo, M. H. Park, I. Stolichnov, M. Cavalieri, C. Zhou, C.-C. Chung, J. L. Jones, T. Szyjka, M. Muller, A. Kersch, T. Mikolajick and U. Schroeder, Adv. Mater. Interfaces, 6, 1900042 (2019).
  10. B. T. Lin, Y.-W. Lu, J. Shieh and M.-J. Chen, J. Eur. Ceram. Soc., 37, 1135 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.10.028
  11. S. Starschich, T. Schenk, U. Schroeder and U. Boettger, Appl. Phys. Lett., 110, 182905 (2017). https://doi.org/10.1063/1.4983031
  12. X. Sang, E. D. Grimley, T. Schenk, U. Schroeder and J. M. LeBeau, Appl. Phys. Lett., 106, 162905 (2015). https://doi.org/10.1063/1.4919135
  13. Y. Wei, P. Nukala, M. Salverda, S. Matzen, H. J. Zhao, J. Momand, A. S. Everhardt, G. Agnus, G. R. Blake, P. Lecoeur, B. J. Kooi, J. Iniguez, B. Dkhil and B. Noheda, Nat. Mater., 17, 1095 (2018). https://doi.org/10.1038/s41563-018-0196-0
  14. M. H. Park and C. S. Hwang, Rep. Prog. Phys., 82, 124502 (2019). https://doi.org/10.1088/1361-6633/ab49d6
  15. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim and C. S. Hwang, Nano Energy, 12, 131 (2015). https://doi.org/10.1016/j.nanoen.2014.09.025
  16. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun and C. S. Hwang, Adv. Mater., 28, 7956 (2016). https://doi.org/10.1002/adma.201602787
  17. M. H. Park, T. Schenk, M. Hoffmann, S. Knebel, J. Gartner, T. Mikolajick and U. Schroeder, Nano Energy, 36, 381 (2017). https://doi.org/10.1016/j.nanoen.2017.04.052
  18. M. Hoffmann, U. Schroeder, C. Kunneth, A. Kersch, S. Starschich, U. Bottger and T. Mikolajick, Nano Energy, 18, 154 (2015). https://doi.org/10.1016/j.nanoen.2015.10.005
  19. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim and C. S. Hwang, Adv. Energy Mater., 4, 1400610 (2014). https://doi.org/10.1002/aenm.201400610
  20. K. D. Kim, Y. H. Lee, T. Gwon, Y. J. Kim, H. J. Kim, T. Moon, S. D. Hyun, H. W. Park, M. H. Park and C. S. Hwang, Nano Energy, 39, 390 (2017). https://doi.org/10.1016/j.nanoen.2017.07.017
  21. M. H. Park, C. S. Hwang, Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, p. 295, B.-E. Park, H. Ishiwara, M. Okuyama, S. Sakai and S.-M. Yoon, vol. 131, Springer, Dordrecht (2016).
  22. M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder and C. S. Hwang, MRS Commun., 8, 795 (2018). https://doi.org/10.1557/mrc.2018.175
  23. T. Mikolajick, S. Slesazeck, M. H. Park and U. Schroeder, MRS Bull., 43, 340 (2018). https://doi.org/10.1557/mrs.2018.92
  24. M. H. Park, T. Shimizu, H. Funakubo, U. Schroeder, Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, p.193-216, U. Schroeder, C. S. Hwang, H. Funakubo (eds), Woodhead Publishing, The Officers' Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom (2019).
  25. T. Shimizu, K. Katayama, T. Kiguchi, A. Akama, T. J. Konno, O. Sakata and H. Funakubo, Sci. Rep., 6, 32931 (2016). https://doi.org/10.1038/srep32931
  26. M. H. Park, C. C. Chung, T. Schenk, C. Richter, M. Hoffmann, S. Wirth, J. L. Jones, T. Mikolajick and U. Schroeder, Adv. Electron. Mater., 4, 1700489 (2018). https://doi.org/10.1002/aelm.201700489
  27. M. H. Park, T. Mikolajick, U. Schroeder and C. S. Hwang, Phys. Status Solidi RRL, 13, 1900177 (2019). https://doi.org/10.1002/pssr.201900177
  28. R. Materlik, C. Kunneth and A. Kersch, J. Appl. Phys., 117, 134109 (2015). https://doi.org/10.1063/1.4916707
  29. T. D. Huan, V. Sharma, G. A. Rossetti Jr. and R. Ramprasad, Phys. Rev. B: Condens. Matter Mater. Phys., 90, 064111 (2014). https://doi.org/10.1103/physrevb.90.064111
  30. S. -G. Lu, Q. Zhang, Adv. Mater., 21, 1983 (2009). https://doi.org/10.1002/adma.200802902
  31. Y. L. Li, L. E. Cross and L. Q. Chen, J. Appl. Phys., 98, 064101 (2005). https://doi.org/10.1063/1.2042528
  32. G. Ackay, S. P. Alpay, J. V. Mantese and G. A. Rossetti Jr., Appl. Phys. Lett., 90, 252909 (2007). https://doi.org/10.1063/1.2750546
  33. X. Wu and G. Li, Adv. Mater. Res., 335-336, 1004 (2011). https://doi.org/10.4028/www.scientific.net/AMR.335-336.1004
  34. M. A. Hamad, Phase Transitions, 85, 159 (2012). https://doi.org/10.1080/01411594.2011.601993
  35. B. Li, W. J. Ren, X. W. Wang, H. Meng, X. G. Liu, Z. J. Wang and Z. D. Zhang, Appl. Phys. Lett., 96, 102903 (2010). https://doi.org/10.1063/1.3353989
  36. Y. Bai, G.-P. Zheng, K. Ding, L. Qiao, S.-Q. Shi and D. Guo, J. Appl. Phys., 110, 094103 (2011). https://doi.org/10.1063/1.3658251
  37. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore and N. D. Mathur, Science, 311, 1270 (2006). https://doi.org/10.1126/science.1123811
  38. H. Chen, T.-L. Ren, X.-M. Wu, Y. Yang and L.-T. Liu, Appl. Phys. Lett., 94, 182902 (2009). https://doi.org/10.1063/1.3123817
  39. B. Neese, B. Chu, S. -G. Lu,Y. Wang, E. Furman and Q. M. Zhang, Science, 321, 821 (2008). https://doi.org/10.1126/science.1159655
  40. L. D. Landau, Phys. Z. Sowjet., 11, 26 (1937).
  41. A. F. Devonshire, Philos. Mag., 40, 1040 (1949). https://doi.org/10.1080/14786444908561372
  42. M. E. Lines, A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, p.1-42, Oxford University Press, Oxford, UK (2001).
  43. X. Lu, H. Li and W. Cao, J. Appl. Phys., 114, 224106 (2013). https://doi.org/10.1063/1.4838456
  44. N. A. Pertsev, A. G. Zembilgotov and A. K. Tagantsev, Phys. Rev. Lett., 80, 1988 (1998). https://doi.org/10.1103/PhysRevLett.80.1988
  45. S. Ducharme, V. M. Fridkin, A. V. Bune, S. P. Palto, L. M. Blinov, N. N. Petukhova and S. G. Yudin, Phys. Rev. Lett., 84, 175 (2000). https://doi.org/10.1103/PhysRevLett.84.175
  46. L. Li, O. Niehaus, M. Kersting and R. Pottgen, Appl. Phys. Lett., 104, 092416 (2014). https://doi.org/10.1063/1.4867882
  47. S. Linsinger, W. Hermes, M. Eul and R. Pottgen, J. Appl. Phys., 108, 043903 (2010). https://doi.org/10.1063/1.3466775
  48. V. K. Pecharsky, K. A. Gschneidner and A. O. Tsokol, Rep. Prog. Phys., 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04
  49. M. H. Phan, H. X. Peng and S. C. Yu, J. Appl. Phys., 97, 10M306 (2005). https://doi.org/10.1063/1.1849554
  50. M. H. Phan, N. D. Tho, N. Chau, S. C. Yu and M. Kurisu, J. Appl. Phys., 97, 3215 (2005).
  51. M.-H. Phan and S.-C. Yu, J. Magn. Magn. Mater., 308, 325 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025
  52. S. Starshich, T. Schenk, U. Schroeder and U. Boettger, Appl. Phys. Lett., 110, 182905 (2017). https://doi.org/10.1063/1.4983031