DOI QR코드

DOI QR Code

Sequential conversion from line defects to atomic clusters in monolayer WS2

  • Gyeong Hee Ryu (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Ren-Jie Chan (Department of Materials, University of Oxford)
  • Received : 2020.11.08
  • Accepted : 2020.11.12
  • Published : 2020.12.31

Abstract

Transition metal dichalcogenides (TMD), which is composed of a transition metal atom and chalcogen ion atoms, usually form vacancies based on the knock-on threshold of each atom. In particular, when electron beam is irradiated on a monolayer TMD such as MoS2 and WS2, S vacancies are formed preferentially, and they are aligned linearly to constitute line defects. And then, a hole is formed at the point where the successively formed line defects collide, and metal clusters are also formed at the edge of the hole. This study reports a process in which the line defects formed in a monolayer WS2 sheet expends into holes. Here, the process in which the W cluster, which always occurs at the edge of the formed hole, goes through a uniform intermediate phase is explained based on the line defects and the formation behavior of the hole. Further investigation confirms the atomic structure of the intermediate phase using annular dark field scanning transition electron microscopy (ADF-STEM) and image simulation.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A1099542).

References

  1. N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, W. Gannett, A. Zettl, Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 80, 155425 (2009) https://doi.org/10.1103/PhysRevB.80.155425
  2. N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, P. Hartel, B. Jiang, W. Gannett, A. Zettl, Vacancy growth and migration dynamics in atomically thin hexagonal boron nitride under electron beam irradiation. Phys. Status Solidi (RRL) 5, 295-297 (2011) https://doi.org/10.1002/pssr.201105262
  3. A. Azizi, X. Zou, P. Ercius, Z. Zhang, A.L. Elias, N. Perea-Lopez, G. Stone, M. Terrones, B.I. Yakobson, N. Alem, Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 5, 4867 (2014) https://doi.org/10.1038/ncomms5867
  4. S. Barja, S. Wickenburg, Z. Liu, Y. Zhang, H. Ryu, M.M. Ugeda, Z. Hussain, Z.-X. Shen, S. Mo, E. Wong, M.B. Salmeron, F. Wang, M.F. Crommie, D.F. Ogletree, J. B. Neaton, A. Weber-Bargioni, Charge density wave order in 1D mirror twin boundaries of single layer MoSe2. Nat. Phys. 12, 751-756 (2016) https://doi.org/10.1038/nphys3730
  5. M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen, R. Fasel, Porous graphenes: Twodimensional polymer synthesis with atomic precision. Chem. Commun. 45, 6919-6921 (2009) https://doi.org/10.1039/B915190G
  6. A.R. Botello-Mendez, X. Declerck, M. Terrones, H. Terrones, J.-C. Charlier, Onedimensional extended lines of divacancy defects in graphene. Nanoscale 3, 2868-2872 (2011) https://doi.org/10.1039/C0NR00820F
  7. Q. Chen, H. Li, S. Zhou, W. Xu, J. Chen, H. Sawada, C.S. Allen, A.I. Kirkland, J.C. Grossman, J.H. Warner, Ultralong 1D vacancy channels for rapid atomic migration during 2D void formation in monolayer MoS2. ACS Nano 12, 7721-2230 (2018) https://doi.org/10.1021/acsnano.8b01610
  8. A.N. Enyashin, M. Bar-sadan, L. Houben, G. Seifert, Line defects in molybdenum disulfide layers. J. Phys. Chem. C 117, 10842-10848 (2013) https://doi.org/10.1021/jp403976d
  9. R. Faccio, A.W. Mombru, The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter 24, 375304 (2012) https://doi.org/10.1088/0953-8984/24/37/375304
  10. A.B. Farimani, K. Min, N.R. Aluru, DNA base detection using a single-layer MoS2. ACS Nano 8, 7914-7922 (2014) https://doi.org/10.1021/nn5029295
  11. C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M. F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: Stability and dynamics. Science 323, 1705-1708 (2009) https://doi.org/10.1126/science.1166999
  12. Y. Han, J. Zhou, J. Dong, Electronic and magnetic properties of MoS2 nanoribbons with sulfur line vacancy defects. Appl. Surf. Sci. 346, 470-476 (2015) https://doi.org/10.1016/j.apsusc.2015.02.016
  13. H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. Phys. Rev. Lett. 109, 035503 (2002) https://doi.org/10.1103/PhysRevLett.109.035503
  14. H.P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 035301 (2013) https://doi.org/10.1103/PhysRevB.88.035301
  15. J. Kotakoski, C.H. Jin, O. Lehtinen, K. Suenaga, A.V. Krasheninnikov, Electron knockon damage in hexagonal boron nitride monolayers. Phys. Rev. B 82, 113404 (2010) https://doi.org/10.1103/PhysRevB.82.113404
  16. J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik, M. Batzill, An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 5, 326-329 (2010) https://doi.org/10.1038/nnano.2010.53
  17. D. Le, T.B. Rawal, T.S. Rahman, Single-layer MoS2 with sulfur vacancies: Structure and catalytic application. J. Phys. Chem. C 118, 5346-5351 (2014) https://doi.org/10.1021/jp411256g
  18. Y.-C. Lin, T. Bjorkman, H.-P. Komsa, P.-Y. Teng, C.-H. Yeh, F.-S. Huang, K.-H. Lin, J. Jadczak, Y.-S. Huang, P.-W. Chiu, A.V. Krasheninnikov, K. Suenaga, Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat. Commun. 6, 6736 (2015) https://doi.org/10.1038/ncomms7736
  19. X. Liu, T. Xu, X. Wu, Z. Zhang, J. Yu, H. Qiu, J.H. Hong, C.H. Jin, J.X. Li, X.R. Wang, L. T. Sun, W. Guo, Top-down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 4, 1776 (2013) https://doi.org/10.1038/ncomms2803
  20. Y. Liu, J. Guo, Y.-C. Wu, E. Zhu, N.O. Weiss, Q. He, H. Wu, H.-C. Cheng, Y. Xu, I. Shakir, Y. Huang, X. Duan, Pushing the performance limit of sub-100nm molybdenum disulfide transistors. Nano Lett. 16, 6337-6432 (2016) https://doi.org/10.1021/acs.nanolett.6b02713
  21. Y. Liu, X. Zou, B.I. Yakobson, Dislocations and grain boundaries in twodimensional boron nitride. ACS Nano 6, 7053-7058 (2012) https://doi.org/10.1021/nn302099q
  22. A. Nourbakhsh, A. Zubair, R.N. Sajjad, A. Tavakkoli, K. G, W. Chen, S. Fang, X. Ling, J. Kong, M.S. Dresselhaus, E. Kaxiras, K.K. Berggren, D. Antoniadis, T. Palacios, MoS2 field effect transistors with sub-10nm channel length. Nano Lett. 16, 7798-7806 (2016) https://doi.org/10.1021/acs.nanolett.6b03999
  23. H.J. Park, G.H. Ryu, Z. Lee, Hole defects on two-dimensional materials formed by electron beam irradiation: Toward nanopore devices. Appl. Microsc. 45, 107-114 (2015)
  24. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147-150 (2011) https://doi.org/10.1038/nnano.2010.279
  25. G.H. Ryu, J. Lee, N.Y. Kim, Y. Lee, Y. Kim, M.J. Kim, C. Lee, Z. Lee, Line defect mediated formation of hole and Mo clusters in monolayer molybdenum disulfide. 2D Mater. 3, 014002 (2016) https://doi.org/10.1088/2053-1583/3/1/014002
  26. G.H. Ryu, H.J. Park, J. Ryou, J. Park, J. Lee, G. Kim, H.S. Shin, C.W. Bielawski, R.S. Ruoff, S. Hong, Z. Lee, Atomic-scale dynamics of triangular hole growth in monolayer hexagonal boron nitride under electron irradiation. Nanoscale 7, 10600-10605 (2015) https://doi.org/10.1039/C5NR01473E
  27. X. Sang, X. Li, W. Zhao, J. Dong, C.M. Rouleau, D.B. Geohegan, F. Ding, K. Xiao, R. Unocic, In situ edge engineering in two-dimensional transition metal dichalcogenides. Nat. Commun. 9, 2051 (2018) https://doi.org/10.1038/s41467-018-04435-x
  28. R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering, 6th edn. (Butterworth-Heinemann, Oxford, 1999)
  29. M. Topsakal, E. Akturk, H. Sevincli, S. Ciraci, First-principles approach to monitoring the band gap and magnetic state of a graphene nanoribbon via its vacancies. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 235435 (2008) https://doi.org/10.1103/PhysRevB.78.235435
  30. A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D.R. Reichman, D.A. Muller, J.C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554-561 (2013) https://doi.org/10.1038/nmat3633
  31. S. Wang, G.-D. Lee, S. Lee, E. Yoon, J.H. Warner, Detailed atomic reconstruction of extended line defects in monolayer MoS2. ACS Nano 10, 5419-5430 (2016) https://doi.org/10.1021/acsnano.6b01673
  32. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615-2622 (2013) https://doi.org/10.1021/nl4007479