DOI QR코드

DOI QR Code

Methods to evaluate the twin formation energy: comparative studies of the atomic simulations and in-situ TEM tensile tests

  • Hong-Kyu Kim (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Sung-Hoon Kim (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Jae-Pyoung Ahn (Advanced Analysis Center, Korea Institute of Science and Technology)
  • 투고 : 2020.08.03
  • 심사 : 2020.09.08
  • 발행 : 2020.12.31

초록

Deformation twinning, one of the major deformation modes in a crystalline material, has typically been analyzed using generalized planar fault energy (GPFE) curves. Despite the significance of these curves in understanding the twin nucleation and its effect on the mechanical properties of crystals, their experimental validity is lacking. In this comparative study based on the first-principles calculation, molecular dynamics simulation, and quantitative in-situ tensile testing of Al nanowires inside a transmission electron microscopy system, we present both a theoretical and an experimental approach that enable the measurement of a part of the twin formation energy of the perfect Al crystal. The proposed experimental method is also regarded as an indirect but quantitative means for validating the GPFE theory.

키워드

과제정보

This work was supported by the KIST R&D program of 2 V08170.

참고문헌

  1. P.M. Anderson, J.P. Hirth, J. Lothe, Theory of dislocations (Cambridge University Press, Cambridge, 2017)
  2. P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994). https://doi.org/10.1103/physrevb.50.17953
  3. C. Brandl, P. Derlet, H.V. Swygenhoven, General-stacking-fault energies in highly strained metallic environments: Ab initio calculations. Phys. Rev. B 76, 54124-54124 (2007). https://doi.org/10.1103/physrevb.76.054124
  4. J.W. Christian, V. Vitek, Dislocations and stacking faults. Rep. Prog. Phys. 33, 307-411 (1970). https://doi.org/10.1088/0034-4885/33/1/307
  5. G.L.W. Cross, A. Schirmeisen, P. Grutter, U.T. Durig, Plasticity, healing and shakedown in sharp-asperity nanoindentation. Nat. Mater. 5, 370-376 (2006). https://doi.org/10.1038/nmat1632
  6. M.S. Daw, M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen Embrittlement in metals. Phys. Rev. Lett. 50, 1285-1288 (1983). https://doi.org/10.1103/physrevlett.50.1285
  7. T. Ezaz, H. Sehitoglu, H.J. Maier, Energetics of twinning in martensitic NiTi. Acta Mater. 59, 5893-5904 (2011). https://doi.org/10.1016/j.actamat.2011.05.063
  8. A.G. Froseth, P.M. Derlet, H.V. Swygenhoven, Twinning in nanocrystalline fee metals. Adv. Eng. Mater. 7, 16-20 (2005). https://doi.org/10.1002/adem.200400163
  9. D.E. Hurtado, M. Ortiz, Surface effects and the size-dependent hardening and strengthening of nickel micropillars. J. Mech. Phys. Solids 60, 1432-1446 (2012). https://doi.org/10.1016/j.jmps.2012.04.009
  10. B. Hwang, M. Kang, S. Lee, C.R. Weinberger, P. Loya, J. Lou, S.H. Oh, B. Kim, S.M. Han, Effect of surface energy on size-dependent deformation twinning of defect-free Au nanowires. Nanoscale 7, 15657-15664 (2015). https://doi.org/10.1039/c5nr03902a
  11. B.W. Jeong, J. Ihm, G.-D. Lee, Stability of dislocation defect with two pentagon-heptagon pairs in graphene. Phys. Rev. B 78, 165403 (2008). https://doi.org/10.1103/physrevb.78.165403
  12. Z.H. Jin, S.T. Dunham, H. Gleiter, H. Hahn, P. Gumbsch, A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr. Mater. 64, 605-608 (2011). https://doi.org/10.1016/j.scriptamat.2010.11.033
  13. M. Jo, Y.M. Koo, B.-J. Lee, B. Johansson, L. Vitos, S.K. Kwon, Theory for plasticity of face-centered cubic metals. Proc. Natl. Acad. Sci. 111, 6560-6565 (2014). https://doi.org/10.1073/pnas.1400786111
  14. C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085-11088 (1998)
  15. S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater. 55, 6843-6851 (2007). https://doi.org/10.1016/j.actamat.2007.08.042
  16. S. Kibey, L. Wang, J. Liu, H. Johnson, H. Sehitoglu, D. Johnson, Quantitative prediction of twinning stress in fcc alloys: application to Cu-Al. Phys. Rev. B 79, 214202-214202 (2009). https://doi.org/10.1103/physrevb.79.214202
  17. H.-K. Kim, S.-H. Kim, J.-P. Ahn, J.-C. Lee, Deformation criterion for face-centered-cubic metal nanowires. Mater. Sci. Eng. 736, 431-437 (2018a). https://doi.org/10.1016/j.msea.2018.08.108
  18. S.-H. Kim, H.-K. Kim, J.-H. Seo, D.-M. Whang, J.-P. Ahn, J.-C. Lee, Deformation twinning of ultrahigh strength aluminum nanowire. Acta Mater. 160, 14-21 (2018b). https://doi.org/10.1016/j.actamat.2018.08.047
  19. S.-H. Kim, J.-H. Park, H.-K. Kim, J.-P. Ahn, D.-M. Whang, J.-C. Lee, Twin boundary sliding in single crystalline Cu and Al nanowires. Acta Mater. 196, 69-77 (2020). https://doi.org/10.1016/j.actamat.2020.06.028
  20. G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  21. G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115-13118 (1993). https://doi.org/10.1103/physrevb.48.13115
  22. J.S. Langer, E. Bouchbinder, T. Lookman, Thermodynamic theory of dislocation-mediated plasticity. Acta Mater. 58, 3718-3732 (2010). https://doi.org/10.1016/j.actamat.2010.03.009
  23. J.W. Lee, M.G. Kang, B.S. Kim, B.H. Hong, D. Whang, S.W. Hwang, Single crystalline aluminum nanowires with ideal resistivity. Scr. Mater. 63, 1009-1012 (2010). https://doi.org/10.1016/j.scriptamat.2010.07.026
  24. S. Lee, J. Im, Y. Yoo, E. Bitzek, D. Kiener, G. Richter, B. Kim, S.H. Oh, Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nat. Commun. 5, 1-10 (2014). https://doi.org/10.1038/ncomms4033
  25. S. Li, X. Ding, J. Li, X. Ren, J. Sun, E. Ma, High-efficiency mechanical energy storage and retrieval using interfaces in nanowires. Nano Lett. 10, 1774-1779 (2010). https://doi.org/10.1021/nl100263p
  26. G. Lu, N. Kioussis, V.V. Bulatov, E. Kaxiras, Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62, 3099-3108 (2000). https://doi.org/10.1103/physrevb.62.3099
  27. F.R. Nabarro, M.S. Duesbery, Dislocations in solids (Elsevier, Amsterdam, 2002)
  28. S. Ogata, J. Li, S. Yip, Energy landscape of deformation twinning in bcc and fcc metals. Phys. Rev. B 71, 224102-224102 (2005). https://doi.org/10.1103/physrevb.71.224102
  29. H. Park, J. Zimmerman, Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 72, 54106-54106 (2005). https://doi.org/10.1103/physrevb.72.054106
  30. R. People, Physics and applications of GexSi1-x/Si strained-layer heterostructures. IEEE J. Quantum Electron. 22, 1696-1710 (1986). https://doi.org/10.1109/jqe.1986.1073152
  31. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1-19 (1995). https://doi.org/10.1006/jcph.1995.1039
  32. J.-H. Seo, H.S. Park, Y. Yoo, T.-Y. Seong, J. Li, J.-P. Ahn, B. Kim, I.-S. Choi, Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Lett. 13, 5112-5116 (2013). https://doi.org/10.1021/nl402282n
  33. J.H. Seo, Y. Yoo, N.Y. Park, S.W. Yoon, H. Lee, S. Han, S.W. Lee, T.Y. Seong, S.C. Lee, K.B. Lee, P.R. Cha, H.S. Park, B. Kim, J.P. Ahn, Superplastic deformation of defect-free au nanowires via coherent twin propagation. Nano Lett. 11, 3499-3502 (2011). https://doi.org/10.1021/nl2022306
  34. Y. Sun, E. Kaxiras, Slip energy barriers in aluminium and implications for ductile-brittle behaviour. Philos. Mag. 75, 1117-1127 (1997). https://doi.org/10.1080/01418619708214014
  35. H.V. Swygenhoven, P.M. Derlet, A.G. Froseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399-403 (2004). https://doi.org/10.1038/nmat1136
  36. E.B. Tadmor, S. Hai, A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 51, 765-793 (2003). https://doi.org/10.1016/s0022-5096(03)00005-x
  37. V. Vitek, Intrinsic stacking faults in body-centered cubic. Acta Metallurgica Sin. Engl. Lett. 18, 773-786 (1968). https://doi.org/10.1007/s40195-015-0271-3
  38. L. Wang, Z. Liu, Z. Zhuang, Developing micro-scale crystal plasticity model based on phase field theory for modeling dislocations in heteroepitaxial structures. Int. J. Plast. 81, 267-283 (2016). https://doi.org/10.1016/j.ijplas.2016.01.010
  39. Y.F. Wen, J. Sun, Generalized planar fault energies and mechanical twinning in gamma TiAl alloys. Scr. Mater. 68, 759-762 (2013). https://doi.org/10.1016/j.scriptamat.2012.12.032
  40. X. Wu, Y.T. Zhu, E. Ma, Predictions for partial-dislocation-mediated processes in nanocrystalline Ni by generalized planar fault energy curves: an experimental evaluation. Appl. Phys. Lett. 88, 121905-121905 (2006). https://doi.org/10.1063/1.2186968