DOI QR코드

DOI QR Code

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar (Department of Pharmaceutical Sciences, Maharshi Dayanand University) ;
  • Pritam Singh (Department of Pharmaceutical Sciences, Maharshi Dayanand University) ;
  • Arun Nanda (Department of Pharmaceutical Sciences, Maharshi Dayanand University)
  • 투고 : 2020.03.06
  • 심사 : 2020.06.02
  • 발행 : 2020.12.31

초록

Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

키워드

과제정보

Authors thank Maharshi Dayanand University, Rohtak for providing resources.

참고문헌

  1. S. Aitipamula, V.R. Vangala, P.S. Chow, R.B. Tan, Cocrystal hydrate of an antifungal drug, griseofulvin, with promising physicochemical properties. Cryst. Growth Des. 12(12), 5858-5863 (2012a). https://doi.org/10.1021/cg3012124
  2. S. Aitipamula, A.B. Wong, P.S. Chow, R.B. Tan, Polymorphism and phase transformations of a cocrystal of nicotinamide and pimelic acid. CrystEngComm. 14(23), 8193-8198 (2012b). https://doi.org/10.1039/C2CE26151K
  3. M. Alhijjaj, M. Reading, P. Belton, S. Qi, Thermal analysis by structural characterization as a method for assessing heterogeneity in complex solid pharmaceutical dosage forms. Anal. Chem. 87(21), 10848-10855 (2015). https://doi.org/10.1021/acs.analchem.5b02192
  4. G.P. Ashton, L.P. Harding, G.M. Parkes, An integrated hot-stage microscope-direct analysis in real time-mass spectrometry system for studying the thermal behavior of materials. Anal. Chem. 89(24), 13466-13471 (2017). https://doi.org/10.1021/acs.analchem.7b03743
  5. N.J. Babu, P. Sanphui, A. Nangia, Crystal engineering of stable temozolomide cocrystals. Chem. Asian J. 7(10), 2274-2285 (2012). https://doi.org/10.1002/asia.201200205O
  6. P.P. Bag, M. Patni, C.M. Reddy, A kinetically controlled crystallization process for identifying new co-crystal forms: Fast evaporation of solvent from solutions to dryness. CrystEngComm. 13(19), 5650-5652 (2011). https://doi.org/10.1039/C1CE05778B
  7. M.R. Bakar, Z.K. Nagy, C.D. Rielly, A combined approach of differential scanning calorimetry and hot-stage microscopy with image analysis in the investigation of sulfathiazole polymorphism. J. Therm. Anal. Calorim. 99(2), 609-619 (2010). https://doi.org/10.1007/s10973-009-0001-z
  8. P. Barmpalexis, A. Karagianni, I. Nikolakakis, K. Kachrimanis, Preparation of pharmaceutical cocrystal formulations via melt mixing technique: A thermodynamic perspective. Eur. J. Pharm. Biopharm. 131, 130-140 (2018). https://doi.org/10.1016/j.ejpb.2018.08.002
  9. J.S. Bergstrom, Mechanics of Solid Polymers: Theory and Computational Modeling. (William Andrew 2015). https://doi.org/10.1016/B978-0-323-31150-2.00002-9
  10. D.J. Berry, C.C. Seaton, W. Clegg, R.W. Harrington, S.J. Coles, P.N. Horton, M.B. Hursthouse, R. Storey, W. Jones, T. Friscic, N. Blagden, Applying hot-stage microscopy to co-crystal screening: A study of nicotinamide with seven active pharmaceutical ingredients. Cryst. Growth Des. 8(5), 1697-1712 (2008). https://doi.org/10.1021/cg800035w
  11. S. Cherukuvada, N.J. Babu, A. Nangia, Nitrofurantoin-p-aminobenzoic acid cocrystal: Hydration stability and dissolution rate studies. J. Pharm. Sci. 100(8), 3233-3244 (2011). https://doi.org/10.1002/jps.22546
  12. J.G. Delly, The literature of classical microchemistry, spot tests, and chemical microscopy. Modern Microscopy (2006) https://www.mccrone.com/theliterature-of-classical-microchemistry-spot-tests-and-chemical-microscopy/.Accessed 18 July 2019
  13. G.R. Desiraju, Supramolecular synthons in crystal engineering-A new organic synthesis. Angew. Chem. Int. Ed. Engl. 34(21), 2311-2327 (1995). https://doi.org/10.1002/anie.199523111
  14. G.R. Desiraju, Polymorphism: The same and not quite the same. Cryst. Growth Des. 8, 3-5 (2008). https://doi.org/10.1021/cg701000q
  15. A. Forster, J. Hempenstall, I. Tucker, T. Rades, Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 226(1-2), 147-161 (2001). https://doi.org/10.1016/S0378-5173(01)00801-8
  16. D. Giron, Applications of thermal analysis in the pharmaceutical industry. J. Pharm. Biomed. Anal. 4(6), 755-770 (1986). https://doi.org/10.1016/0731-7085(86)80086-3
  17. B.C. Hancock, M. Parks, What is the true solubility advantage for amorphous pharmaceuticals? Pharm. Res. 17, 397-404 (2000). https://doi.org/10.1023/A:1007516718048
  18. L. Harding, S. Qi, G. Hill, M. Reading, D.Q. Craig, The development of microthermal analysis and photothermal microspectroscopy as novel approaches to drug-excipient compatibility studies. Int. J. Pharm. 354(1-2), 149-157 (2008). https://doi.org/10.1016/j.ijpharm.2007.11.009
  19. H. He, L. Jiang, Q. Zhang, Y. Huang, J.R. Wang, X. Mei, Polymorphism observed in dapsone-flavone cocrystals that present pronounced differences in solubility and stability. CrystEngComm. 17(34), 6566-6574 (2015). https://doi.org/10.1039/C5CE01208B
  20. A.M. Healy, Z.A. Worku, D. Kumar, A.M. Madi, Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv. Drug Deliv. Rev. 117, 25-46 (2017). https://doi.org/10.1016/j.addr.2017.03.002
  21. S.Q. Henwood, W. Liebenberg, L.R. Tiedt, A.P. Lotter, M.M. de Villiers, Characterization of the solubility and dissolution properties of several new rifampicin polymorphs, solvates, and hydrates. Drug Dev. Ind. Pharm. 27(10), 1017-1030 (2001). https://doi.org/10.1081/ddc-100108364
  22. C.H. Hsu, W.T. Ke, S.Y. Lin, Progressive steps of polymorphic transformation of gabapentin polymorphs studied by hot-stage FTIR microspectroscopy. J. Pharm. Pharm. Sci. 13(1), 67-77 (2010). https://doi.org/10.18433/j3fs32
  23. A. Jacobs, F.M. Noa, Hybrid salt-cocrystal solvate: P-coumaric acid and quinine system. J. Chem. Crystallogr. 44(2), 57-62 (2014). https://doi.org/10.1007/s10870-013-0480-4
  24. J.H. Kilbourn, W.C. McCrone, Fusion methods identification of inorganic explosives. Microscope 33(2), 73-90 (1985)
  25. L. Kofler, A. Kofler, Thermal Micromethods for the Study of Organic Compounds and their Mixtures (Innsbruck, Wagner, 1952) (translated by McCrone, W. C.; McCrone Research Institute: Chicago, 1980)
  26. L. Kofler and A. Kofler, Mikroskopische Methoden (Springer-Verlag, Wien, 1954)
  27. O. Lehmann, Molekularphysik (Engelmann, Leipzig, 1888)
  28. O. Lehmann, Das Kristallisationsmikroskop (Vieweg, Braunschweig, 1910)
  29. E. Leksic, G. Pavlovic, E.Mestrovic, Cocrystals of lamotrigine based on coformers involving carbonyl group discovered by hot-stage microscopy and DSC screening. Cryst. Growth Des. 12(4), 1847-1858 (2012). https://doi.org/10.1021/cg201426z
  30. S.Y. Lin, W.T. Cheng, The use of hot-stage microscopy and thermal micro-Raman spectroscopy in the study of phase transformation of metoclopramide HCl monohydrate. J. Raman Spectrosc. 43(8), 1166-1170 (2012). https://doi.org/10.1002/jrs.3155
  31. J. Lu, S. Rohani, Preparation and characterization of theophylline-nicotinamide cocrystal. Org. Process Res. Dev. 13(6), 1269-1275 (2009). https://doi.org/10.1021/op900047r
  32. Y. Maeda, M. Koizumi, New high-pressure hot stage for optical microscopy. Rev. Sci. Instrum. 67(5), 2030-2031 (1996). https://doi.org/10.1063/1.1146965
  33. M. Malamatari, S.A. Ross, D. Douroumis, S.P. Velaga, Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv. Drug Deliv. Rev. 117, 162-177 (2017). https://doi.org/10.1016/j.addr.2017.08.006
  34. W.C. McCrone, Fusion Methods in Chemical Microscopy (Wiley, New York, 1957)
  35. W.C. McCrone, in Physics and Chemistry of the Organic Solid State, ed. by D. Fox, M. M. Labes, A. Weissberger. Polymorphism, vol 2 (Wiley-Interscience, New York, 1965), pp. 725-767
  36. W.C. McCrone, J.H. Andreen, S.M. Tsang, Identification of Organic High ExplosivesMicroscope-London (1993)
  37. W.C. McCrone, L.B. McCrone, J.G. Dell, Polarized Light Microscopy (McCrone Research Institute, Chicago, 1984), p. 198
  38. D.P. McNamara, S.L. Childs, J. Giordano, A. Iarriccio, J. Cassidy, M.S. Shet, R. Mannion, E. O'Donnell, A. Park, Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm. Res. 23(8), 1888-1897 (2006). https://doi.org/10.1007/s11095-006-9032-3
  39. A. Mukherjee, G.R. Desiraju, Synthon polymorphism and pseudopolymorphism in co-crystals, the 4, 4'-bipyridine-4-hydroxybenzoic acid structural landscape. ChemComm. 47(14), 4090-4092 (2011). https://doi.org/10.1039/C0CC05857B
  40. D.B. Murphy, K.R. Spring, T.J. Fellers, Principles of Birefringence (2019) url:https://www.microscopyu.com/techniques/polarized-light/principles-of-birefringence
  41. W. Panna, P. Wyszomirski, P. Kohut, Application of hot-stage microscopy to evaluating sample morphology changes on heating. J. Therm. Anal. Calorim. 125(3), 1053-1059 (2016). https://doi.org/10.1007/s10973-016-5323-z
  42. G.L. Perpetuo, G.O. Chierice, L.T. Ferreira, T.F. Fraga-Silva, J. Venturini, M.S.G.B. Arruda, R.A. Castro, A combined approach using differential scanning calorimetry with polarized light thermomicroscopy in the investigation of ketoprofen and nicotinamide cocrystal. Thermochim. Acta 651, 1-10 (2017). https://doi.org/10.1016/j.tca.2017.02.014
  43. M. Reading, Thermal analysis by structural characterization (TASC): Structural and thermo-rheological information from hot stage microscopy. Microscopy Today 25(5), 18-23 (2017). https://doi.org/10.1017/S1551929517000815
  44. M. Reading, A. D. Stacey, Thermal Analysis Technique that Combines Differential Scanning Calorimetry and Light Microscopy (2015) url:https://www.americanlaboratory.com/913-Technical-Articles/174891-A-Thermal-Analysis-Technique-That-Combines-Differential-Scanning-Calorimetry-and-Light-Microscopy/
  45. M. Reading, M. Morton, M. Antonijevic, D. Grandy, D. Hourston, A. Lacey, in Microscopy: Advances in Scientific Research and Education, Vol. 2. New methods of thermal analysis and chemical mapping on a micro and Nano scale by combining microscopy with image analysis (Formatex, Badajoz, 2014), pp. 1083-1089
  46. M. Reading, S. Qi, M. Alhijjaj, in Thermal Physics and Thermal Analysis. Local thermal analysis by structural characterization (TASC) (Springer, 2017), pp. 1-10. https://doi.org/10.1007/978-3-319-45899-1_1
  47. P. Sanphui, G. Bolla, A. Nangia, High solubility piperazine salts of the nonsteroidal anti-inflammatory drug (NSAID) meclofenamic acid. Cryst. Growth Des. 12(4), 2023-2036 (2012). https://doi.org/10.1021/cg300002p
  48. M. Simek, V. Grunwaldova, B. Kratochvil, Hot-stage microscopy for determination of API particles in a formulated tablet. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/832452
  49. M. Simek, V. Grunwaldova, B. Kratochvil, Hot-stage microscopy for determination of API fragmentation: Comparison with other methods. Pharm. Dev. Technol. 21(5), 583-589 (2016). https://doi.org/10.3109/10837450.2015.1026608
  50. N. Stieger, M. Aucamp, S.W. Zhang, M.M. De Villiers, Hot-stage optical microscopy as an analytical tool to understand solid-state changes in pharmaceutical materials. Am. Pharm. Rev. 15, 32-36 (2012)
  51. S. Tothadi, Polymorphism in cocrystals of urea: 4, 4'-bipyridine and salicylic acid: 4, 4'-bipyridine. CrystEngComm 16(32), 7587-7597 (2014). https://doi.org/10.1039/C4CE00866A
  52. A.V. Trask, W.S. Motherwell, W. Jones, Pharmaceutical cocrystallization: Engineering a remedy for caffeine hydration. Cryst. Growth Des. 5(3), 1013-1021 (2005). https://doi.org/10.1021/cg0496540
  53. S.K. Verma, G.M. Raynaud, R.A. Rapp, Hot-stage scanning electron microscope for high-temperature in-situ oxidation studies. Oxid. Met. 15(5-6), 471-483 (1981). https://doi.org/10.1007/BF00603538
  54. I.M. Vitez, A.W. Newman, M. Davidovich, C. Kiesnowski, The evolution of hot-stage microscopy to aid solid-state characterizations of pharmaceutical solids. Thermochim. Acta 324, 187-196 (1998). https://doi.org/10.1016/S0040-6031(98)00535-8
  55. M. Wesolowski, Thermoanalytical methods in pharmaceutical technology. J. Thermal Anal. 38(9), 2239-2245 (1992)
  56. H.G. Wiedemann, S. Felder-Casagrande, in Handbook of Thermal Analysis and Calorimetry. Thermomicroscopy (Elsevier Science BV, 1998), pp. 473-497. https://doi.org/10.1016/S1573-4374(98)80013-7
  57. W. Yang, K.P. Johnston, R.O. Williams III, Comparison of bioavailability of amorphous versus crystalline itraconazole nanoparticles via pulmonary administration in rats. Eur. J. Pharm. Biopharm. 75(1), 33-41 (2010). https://doi.org/10.1016/j.ejpb.2010.01.011
  58. L. Yuan, H. Lorenz, Solvate formation of Bis (demethoxy) curcumin: Screening and characterization. Crystals 8(11), 407 (2018). https://doi.org/10.3390/cryst8110407
  59. G.G. Zhang, D. Zhou, in Developing Solid Oral Dosage Forms. Crystalline and amorphous solids (Academic press, 2009), pp. 25-60. https://doi.org/10.1016/B978-0-444-53242-8.00002-3
  60. Z. Zhou, H.M. Chan, H.H. Sung, H.H. Tong, Y. Zheng, Identification of new cocrystal systems with stoichiometric diversity of salicylic acid using thermal methods. Pharm. Res. 33(4), 1030-1039 (2016). https://doi.org/10.1007/s11095-015-1849-1